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PREFACE

Unit 1 reviews basic aspects of statistics, including univariate correlation and regression (i.e., single

predictor). Unit 2 introduces multiple regression (i.e., multiple predictors) with two predictors. Unit 3 extends

regression analysis to multiple predictors and various applications (e.g., nonlinear relationships, categorical

predictors). A companion manuscript on Analysis of Variance (ANOVA) demonstrates the equivalence of

regression and ANOVA analyses despite their seeming differences. In essence, ANOVA involves

applications of regression (sometimes labeled General Linear Model) to certain research scenarios that allow

for alternative but equivalent calculations to those used for regression. This point is made briefly in the

present chapters where relevant.

Regression as presented in this manuscript involves only basic mathematical operations.

Understanding material like statistics requires practice and repetition, and also benefits from exposure to

alternative conceptualization of important features, such as the unique contribution of individual predictors in

a multiple regression. Although, conceptual repetition can seem confusing and redundant, it results in a

deeper understanding of the analyses.

With respect to SPSS, I focus on syntax, which is to be recommended over a menu approach. It

provides a record of the analyses, makes it easy to correct and rerun analyses, allows creation of simulations

to generate data, and gives access to some procedures not available by menu (e.g., MANOVA).

Thanks to several colleagues who have contributed to my own understanding of regression and to the

many students over the years who tolerated my sometimes “casual” lectures on this material. Errors or

suggestions? Please e-mail j.clark@uwinnipeg.ca. Thanks ... Jim

© James M. Clark 2024



Intermediate Regression Analysis 1.1

Figure 1-1. Frequency Distribution (Histogram) of Scores.

CHAPTER 1 - SINGLE SAMPLE STATISTICS

Data analysis begins with a collection of scores, called a sample. The sample generally comes from a

large population of scores, but for this chapter the population consists of 51 students who rated the statement

“I look forward with great pleasure to Intermediate Statistics” on a 7-point scale (1 = Strongly Disagree, 7 =

Strongly Agree). A random sample of 9 observations was selected from this population of 51 ratings.

Descriptive Statistics

Descriptive statistics describe

characteristics of a sample of scores, such as

where along the dimension of agreement the set

of scores tends to fall (central location) and how

spread out the sample scores are on this

dimension (variability). These descriptive

statistics are used to make inferences about the

population of scores from which they come.

The following commands are typed in

SPSS’s syntax window (see supplementary

handout on SPSS) and create an SPSS data file.

Bolded text contains SPSS commands in capital

letters and user text in lowercase letters. Lines

beginning with * are comments and ignored by

SPSS. Non-bolded regular text contains SPSS printouts from the commands that precede the output, and

italicized text contains notes added to the output.

*Sample of 9 observations.

DATA LIST FREE / y.

BEGIN DATA

2 4 3 5 5 4 4 4 5

END DATA.

*Listing (includes later calculations).

LIST.

     y   mean   ydev  ydev2
  2.00   4.00  -2.00   4.00
  4.00   4.00    .00    .00
  3.00   4.00  -1.00   1.00
  5.00   4.00   1.00   1.00
  5.00   4.00   1.00   1.00
  4.00   4.00    .00    .00
  4.00   4.00    .00    .00
  4.00   4.00    .00    .00
  5.00   4.00   1.00   1.00
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Intermediate Regression Analysis 1.2

Box 1-1.

A good first step in data analysis is to represent the results visually. For this sample of scores, a

frequency distribution is appropriate. The following command produced the graph in Figure 1-1 and the table

below. The horizontal axis represents the rating scale and the vertical axis the frequency of each value.
 
FREQUENCIES y /HISTOGRAM.

             Frequency Percent Valid Percent Cumulative      
                                             Percent         
 Valid 2.00  1         11.1    11.1          11.1            
       3.00  1         11.1    11.1          22.2            
       4.00  4         44.4    44.4          66.7            
       5.00  3         33.3    33.3          100.0           
       Total 9         100.0   100.0                         

A frequency distribution has two qualities, central location and variability. The central location,

middle, or average of the distribution appears to be around 4. With respect to variability, scores range from 2

to 5. Consider first central location or central tendency. There are various measures of average, but the most

common is the mean: the sum of the scores or total divided by the number of scores. In summation notation

(see supplementary handout on summation notarion), ȳ = �y/n, where �y (sum of y or sigma y) is the total

and n is the number of scores. SPSS can perform such calculations even for very many scores. Here is the

command to get the sum of the 9 scores.

DESCRIPTIVES y /STATISTICS = SUM.

                 N Sum   

 y               9 36.00 = �y

Given a sum of 36.0 and n = 9 scores, the mean is ȳ = 36/9 = 4.0 (see formula in Box

1-1), exactly where the center appeared to be in the histogram. The first COMPUTE below

adds the mean to the file (see the second column headed mean in the earlier listing). The

second COMPUTE subtracts the mean from each of the scores, producing ydev in column

three, and the third COMPUTE squares these deviations producing ydev2 in column 4. These calculations can

be used to demonstrate why the mean is a good measure of the average or central tendency for a distribution.

COMPUTE mean = 36 / 9. = �y/n = ȳ

COMPUTE ydev  = y - mean. = y-ȳ

COMPUTE ydev2 = ydev**2. = (y-ȳ)2

One reason the mean is a good measure of the average is that it is the point of balance of the set of

scores. The distance from the mean to all scores above the mean is exactly the same as the distance to all

scores below. In terms of summation notation, �(y-ȳ) = 0. Summing the values in the ydev column gives a

total of 0. The following command instructs SPSS to compute the sum of ydev. The result is 0, as expected.
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Intermediate Regression Analysis 1.3

Figure 1-2.

Box 1-2.

DESCRIPTIVES ydev ydev2 /STATISTICS = SUM.

                 N Sum    

 ydev            9 .00 = �(y-ȳ)

 ydev2           9 8.00 = �(y-ȳ)2

A second way to think about an average is how close it is to all scores. Because deviations from the

mean always sum to 0, they do not measure how close the mean is to all 9 scores. Squaring the deviations

removes the positive and negative signs and squared deviations can be summed. The further the scores are

from the mean, the larger the sum of squared deviations. In summation notation, the sum of squared

deviations about the mean is �(y-ȳ)2 = 8.0 as calculated above by SPSS or by summing the ydev2 scores in

the earlier listing. This quantity is abbreviated SS for sum of squares and is used often in statistics.

SS provides a second reason why the mean is a good measure of central

tendency; namely, the sum of squared deviations about the mean is a minimum.

That is, the sum of squared deviations about the mean is smaller than the sum

of squared deviations from any other value. For example, subtracting 4.5 from

each score and squaring those deviations gives a value greater than SS = 8.0.

The mean comes as close as possible to all scores in terms of squared

deviations or squared distances. Figure 1-2 shows �(y-k)2 for different values of k. The sum of deviations

about k is a minimum, 8.0, when k = 4.0, which is the mean. The mean is the point closest to all the data

points in terms of squared deviations.

A final reason the sample mean is a good measure of average is that the expected value (EV) of all

possible sample means is the average for the population from which the sample comes; that is, EV(ȳ) = µ, the

population mean (represented by the Greek letter mu). A later section shows this more concretely.

The second property of the sample to quantify is its variability. SS measures

variability because the further the scores are from the mean, the larger SS will be (see

Box 1-2). When all scores are identical (no variability), then the scores equal ȳ and SS

equals 0. The value for our sample, SS = 8.0, measures the amount of variability in the 9

scores. A major goal of statistics is to determine how much other variables can predict or explain of SS.

One limitation of SS is that it depends on the number of scores and not just the extent of variability in

the scores. If we doubled the number of scores by duplicating the original 9 scores, the extent of variability

has not increased, but SS will. We need to calculate something like the “average” variability in the scores.

The initial impulse might be to divide SS by the number of scores, but this would only be correct IF SS was

based on the entire population of scores, whereas our SS is based on a sample rather than the population. The

���������	�
���
�����



Intermediate Regression Analysis 1.4

reason it would be inappropriate to divide by n can be thought of in two ways.

One way is to remember that the mean used the sum of the scores, 36.0. Given this total, not all scores

are “free to vary” because the scores must always sum to 36.0. For example, if we did not know the first score

in the sample (the 2 in the listing), then the scores would sum to 34.0. But the sum has to be 36.0 to produce a

mean of 4.0, so the first (missing) score must be 2. The same logic applies if any other score is removed, but

not if two or more scores are removed. In statistical terms, only n-1 scores are free to vary. This quantity is

called the degrees of freedom or df for short. To calculate an “average” variability, SS is divided by df = n - 1

= 9 - 1 = 8. This statistic is called the variance, s2 = SS/df = 8.0/8 = 1.0, for this sample.

A second way to appreciate why we must divide SS by a number less than n is because the sample SS

is a minimum; that is, �(y-ȳ)2 = 8.0 is a minimum. This is an issue because researchers are actually interested

in the variability in the population, rather than the sample. In the population, SS = �(y-µ)2, where µ is the

population mean not the sample mean. But µ generally will differ from ȳ except rarely when the two are

exactly the same. This means that �(y-ȳ)2 will generally be less than �(y-µ)2 and too small an estimate of the

population variability or variance, �2 (represented by lowercase Greek letter sigma). To adjust for a sample

SS that is too small, SS is divided by a number smaller than n, namely n-1. This will give a better estimate

(Expected Value) of the population variance; that is, EV(s2) = �2, as shown later.

One issue with s2 is that it is the “average” squared deviation from the mean. People normally think in

terms of actual units of distance, not squared distances. To eliminate the squaring, the square root of the

variance produces another measure of variability, the standard deviation, s = �s2 = �1.0 = 1.0 in the present

sample. Normally, s2 and s will rarely be equal.

SPSS can calculate these descriptive statistics directly. Note below that the full SPSS command words

DESCRIPTIVE and STATISTICS are not required. SPSS only needs enough characters to uniquely identify

the specific command. As well, SPSS calculates default statistics if /STATISTIC = is omitted.

DESCR y /STAT = MEAN VARIANCE STDDEV.

                 N Mean   Std. Deviation Variance 
 y               9 4.0000 1.00000        1.000    

Although SPSS can calculate most of the quantities needed for analyses, calculating the quantities by

hand helps to understand the concepts and interpret the SPSS output. Therefore, practice the calculations so

that they become automatic.
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Intermediate Regression Analysis 1.5

Box 1-3.

Figure 1-4. Sampling distribution of ȳs.

Figure 1-5. Sampling distribution of variances (s2).

Sampling Distributions

The sample of 9 scores was selected from a

population of 51 scores. The population mean,

variance, and standard deviation are: � = 3.82353, �2 

= 2.8904, �  = 1.7001. Normally researchers do not

know these population values, but must estimate them

from a sample.

Our sample was one of many possible samples

that could be selected from this population. To

illustrate, 10,000 samples of n = 9 observations were

randomly selected to produce the 10,000 sample

means, ȳs, plotted in Figure 1-4. A frequency or

probability distribution for a sample statistic, ȳ here, is called a Sampling Distribution. Observe that the mean

of the sample means, 3.8287 = EV(ȳ), is very close to the population mean, despite variability across

samples. We previously noted that EV(ȳ) is �; the expected value is the mean of all possible ȳs.

Figure 1-5 shows the sampling distribution of

the variances for 10,000 samples. The mean of the

sample variances, 2.9029, is close to the population

variance, �2  = 2.8904. Each sample variance was SS

divided by df = n - 1. If SS had been divided by n,

the mean of the variances would be 2.5804, much

smaller than the population variance. SS/n gives a

value too small because SSy = �(y - ȳ)2, whereas the

desired SS is �(y - �)2. Because the sum of squared

deviations about the sample mean is a minimum, �(y

- ȳ)2 will always be less than or (rarely) equal to �(y

- �)2. That is, sample SSs are too small. 

In fact the mean of the sample SSs is 23.2232, whereas the mean of �(y - �)2 is 26.0738. To adjust for

SS being too small, SS is divided by n-1 to produce a better estimate of �2. Observe that

dividing 26.0738, the squared deviations about the population mean rather than the sample

mean, by 9 (i.e., n) produces a value of 2.8971, very close to the population variance.

A second important aspect of the Sampling Distribution of ȳ is the variability in the ȳ
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Intermediate Regression Analysis 1.6

from sample to sample: sȳ = .5628 in Figure 1-4.  Normally, we do not have 10,000 samples to calculate sȳ for

the sample means, but the Central Limit Theorem (CLT) states that sȳ will be �/�n (see Box 1-3). In the

present case where we know �, we expect sȳ = 1.7001/�9 = .5667, very close to sȳ for the simulation. The

standard deviation for a sample statistic is also called its Standard Error (SE).

So if �y and �y are known for the population, which is rare but true in the present case, then �ȳ = �y,

and �ȳ = �y/�n. The CLT also states that the distribution of ȳ will be normal, which means that a z-score

could be calculated for observed ȳs using �ȳ and �ȳ; that is, z = (ȳ - �ȳ)/�ȳ.

Appendix 1-1 presents some samples of data with which to practice calculation of the descriptive

statistics described here. They focus on the calculations only, but you want those to be as automatic as

possible so that they can be done quickly and do not disrupt the cognitive processes required to understand

and explain what they mean. They also provide an opportunity to learn about and practice working with your

calculator (e.g., memory, brackets, how it performs successive operations). Again, you want the ability to do

operations to be fluent, certainly for tests, but even for class activities and assignments. You can also enter

the data into SPSS to become more familiar with SPSS commands and output. When working with larger sets

of data, use SPSS to do the necessary calculations to put into formula {e.g., �y, �(y-ȳ)2}.
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Intermediate Regression Analysis 1.7

APPENDIX 1-1

DESCRIPTIVE STATISTICS EXERCISE SHEET

SAMP    X1  X2  X3  X4  X5  X6  X7  X8  X9 X10 X11 X12     MEAN       SS    VAR    SD

   1 -  14  13  13   8   9                               11.400   29.200  7.300 2.702
   2 -  11   8   7   7   6  11   6   7   4                7.444   42.222  5.278 2.297
   3 -   8   8   8   7   6                                7.400    3.200   .800  .894
   4 -  23  24  31  23  22  27  19  24  29               24.667  110.000 13.750 3.708
   5 -   7   6   7   6  10                                7.200   10.800  2.700 1.643
   6 -  14  19  21  19  21  20  18  22  19  19  20       19.273   44.182  4.418 2.102
   7 -   3  10  10   9   6   7                            7.500   37.500  7.500 2.739
   8 -  19  19  17  20  18  20  22  15  18  23  22   9   18.500  155.000 14.091 3.754
   9 -  21  25  23  16  27  21  18  13  27  21  19       21.000  194.000 19.400 4.405
  10 -   3   5   3   3   5   6   4   5                    4.250    9.500  1.357 1.165
  11 -  22  25  17  18  18  21  23  17  29  19  17       20.545  152.727 15.273 3.908
  12 -  14  10  16  12  11  17  15  13  16  18           14.200   63.600  7.067 2.658
  13 -  13  18  23  18  14                               17.200   62.800 15.700 3.962
  14 -   5   4   4   5   5   5   6   2   5   5            4.600   10.400  1.156 1.075
  15 -  10   5   8   9   9  11   6   9   8   8  11        8.545   34.727  3.473 1.864
  16 -  16  13  18   8  18  18                           15.167   80.833 16.167 4.021
  17 -  19  21  17  17  15  19  20                       18.286   25.429  4.238 2.059
  18 -  18  19  15  13  18  19  12  18                   16.500   54.000  7.714 2.777
  19 -  11  13  15   9  15  14  16  13                   13.250   37.500  5.357 2.315
  20 -  22  27  11  20  13                               18.600  173.200 43.300 6.580
  21 -   6   6   6   5   5   7   6   8                    6.125    6.875   .982  .991
  22 -   7   7  11  12   9   8  10   8                    9.000   24.000  3.429 1.852
  23 -   5   4   6   5   6   5   6                        5.286    3.429   .571  .756
  24 -  14  18  18  16  16  15  20  15  17               16.556   28.222  3.528 1.878
  25 -  13  16   8  18  15  16  17  12  18  21  18  18   15.833  131.667 11.970 3.460
  26 -  16  16  18  13  15  17  20  18  16  13  17       16.273   44.182  4.418 2.102
  27 -  11  10  10   9  12  12                           10.667    7.333  1.467 1.211
  28 -  30  23  26  19  21  24  32  29  22  26  25  33   25.833  213.667 19.424 4.407
  29 -  16  16  24  23  26                               21.000   88.000 22.000 4.690
  30 -   5   9  10   7   9   7   8   6  11                8.000   30.000  3.750 1.936
  31 -   8  12   7   9   9  11   9   7  10   8   7  13    9.167   43.667  3.970 1.992
  32 -  10  11  15  15                                   12.750   20.750  6.917 2.630
  33 -  21  18  15  14  11  11                           15.000   78.000 15.600 3.950
  34 -  18  12  19  20  19  21  19  14  10               16.889  120.889 15.111 3.887
  35 -   5   6   7   7   5   5   6   6   7                6.000    6.000   .750  .866
  36 -  18  17  17  18                                   17.500    1.000   .333  .577
  37 -   6   7   6   6   7   8   7   7   6   7            6.700    4.100   .456  .675
  38 -  18  19  19  26  22  24  21  22  10               20.111  166.889 20.861 4.567
  39 -   7   7   8   7   8   8   9                        7.714    3.429   .571  .756
  40 -  20  21  21  24  22                               21.600    9.200  2.300 1.517
  41 -   8  10   8  11   9   7   9   6   6   8  11        8.455   30.727  3.073 1.753
  42 -   8   7   8   6   7   5                            6.833    6.833  1.367 1.169
  43 -   7   7   9   8   7   7   7                        7.429    3.714   .619  .787
  44 -   8  13  13  12  11  15  12                       12.000   28.000  4.667 2.160
  45 -  21  21  14  16  12  18  18  19  18  22  14  17   17.500  105.000  9.545 3.090
  46 -   4   4   5   6   4   4   5   6   4   5   4   6    4.750    8.250   .750  .866
  47 -  18  26  19  22  15  14  20  25  25  25  25       21.273  188.182 18.818 4.338
  48 -  11  12  11  11   9  11  11                       10.857    4.857   .810  .900
  49 -  29  27  26  25  26  14  24  21  25  16  29       23.818  241.636 24.164 4.916
  50 -  17  16  17  24                                   18.500   41.000 13.667 3.697
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Box 2-1. Hypothesis Testing Framework.

CHAPTER 2 - HYPOTHESIS TESTING

The preceding lecture showed the relationship between samples and populations. The population was

known in our example, but researchers generally want to make an inference about an unknown population

based on a sample. This is called hypothesis testing and involves inferences about some population value

(e.g., population mean, difference between population means, correlation in population). Consider an

hypothesis about a population mean. Suppose researchers want to test a theory that predicts a certain

population (e.g., university graduates) has an IQ higher than the general population (i.e.,µ = 100).

The first step might seem unusual at first. Start with a statistical hypothesis that university students do

not have a higher IQ. This is called the Null Hypothesis: H0 µ = 100. The prediction is called the Alternative

Hypothesis and reflects the prediction: Ha µ > 100. Researchers select a sample of university students and

calculate their IQ: ȳ = 107, for example. A statistical test is applied to decide what is the probability that this

sample came from the H0 population (i.e., people with an average IQ = 100). If the probability is lower than a

value that researchers have selected, called Alpha (�), then they reject H0 µ = 100 and accept Ha µ > 100. But

if the probability of ȳ coming from the H0 population is greater than alpha, they do not (i.e., fail to) reject H0

and accept Ha µ > 100, which is what the theory predicted.

Box 2-1 demonstrates four possible outcomes

given the actual (but unknown) state of affairs and the

decision made by the researchers. Two of the four cells

represent correct decisions. One is if the researchers

reject a false H0, and the other is if they do not reject a

true H0. The other two cells represent errors. Rejecting

a true H0 is one kind of error, called a Type I error. Failing to reject a false H0 is another error, called a Type

II error. This course focuses almost entirely on statistics related to Type I errors. Type II errors are also very

important, but the statistics involved benefit from a good appreciation of analyses and Type I errors.

By selecting different values for alpha, researchers control the probability of a Type I error. If they

choose � = .05, then we expect to reject a true H0 5% of the time or 5 out of 100 times. If researchers are not

willing to take that much risk of a Type I error, they could use � = .01. Then the probability of a Type I error

is 1 out of 100 times. If willing to take more of a risk than .05, researchers could use � = .10 and accept a

probability of rejecting a true H0 as 10 out of 100 times. Note that choosing a very small value for � increases

the probability of a Type II error. By making it less likely to Reject H0, researchers increase the decision Do

Not Reject H0, which increases the probability of a Type II error.

A major challenge in this hypothesis testing scenario is how to calculate the probability of the
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Box 2-2.

Figure 2-1. Distribution of z Statistic.

Figure 2-2. Distribution of t Statistic.

observed outcome if H0 is true so that the observed probability can be compared to �. Researchers calculate

the probability based on the sampling distribution of the relevant test statistic for the sample, ȳ for µ in our

example, or other sample statistics for hypotheses about different population values.

Hypothesis Test for Single Population Mean (µ=µ0)

Researchers generally do not know what � is, but they can hypothesize a

value denoted as µ0 and then determine whether ȳ is farther from the hypothesized

value than expected. The hypothesized value is called the Null Hypothesis, H0.

Inferential statistics calculate the probability of the sample statistic if the H0 is

true. For tests of a single µ, the null specifies a specific value, µ0 in Box 2-2.

Because � = 3.82353 and � = 1.7001 for our population, we can illustrate the logic of hypothesis

testing using the z distribution. For each of 10,000 samples we calculate a z score using the following

command. Note that it uses µ and � for the population. The

distribution of the resulting zs appears in Figure 2-1.

COMPUTE z = (mean-3.82353)/[1.7001/SQRT(9)].

As expected for a normal distribution, z̄ � 0 and sZ � 1.

The probability distribution for normal z scores states that about

5% of zs should be less than or equal to -1.96 or greater than or

equal to +1.96. So to reject H0: � = 3.82353 only 5% of the time

when it is true (i.e., use � = .05), researchers reject the H0 if z

for ȳ is less than or equal to -1.96 or greater than or equal to

+1.96. In fact, in the 10,000 samples, 4.9% of the zs were less

than or equal to -1.96 or greater than or equal to +1.96, close to

the 5.0% value expected theoretically when the H0 is true.

The z distribution cannot be used in most studies

because researchers usually do not know what � is. Instead they

only have s for a single sample, which means they cannot

calculate a z-statistic. Instead, a different sampling distribution

must be used, such as the t or F distribution. When � is

unknown, s (std in the simulated data) is used in the

denominator of the t statistic (see Box 2-2).

COMPUTE t = (mean - 3.82353)/(std/SQRT(9)).
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Box 2-3.

Figure 2-3. Distribution of 10,000 Fs.

The sampling distribution of the 10,000 ts is shown in Figure 2-2. The mean t is still very close to 0,

as expected given the correct population mean; however, there is more variability in the t statistic than in the

z statistic, st = 1.152 rather than 1.0. This occurs because s varies from sample to sample, and an s smaller

than � will produce a t larger than z for that sample.

Given the greater variability, the percent of ts less than or equal to -1.96 OR greater than or equal to

+1.96 is more than 5%. Using ±1.96 as a cut-off, 8.3% (p = .083) of the ts would lead researchers to reject H0

even when it is true. This would be higher than expected if the desired probability of a Type I Error (i.e.,

rejecting a true null hypothesis) was .05.

The correct probability uses a critical value from the t distribution rather than the z distribution. The

distribution of t varies with its df, n-1 here (from s). From the table for t, t.025 = 2.306 for df = n - 1 = 8. If H0

is true, then p(t � 2.306) = .025. Since the t distribution is symmetrical, p(t � -2.306) = .025 as well.

Therefore, p(t � -2.306 OR t � +2.306 IF H0 true) = .05 = p(Reject H0 if it is true) = p(Type I Error) = �

(alpha). In the 10,000 samples, 5.3% of the ts fall outside these limits, close to 5.0%.

A second, equivalent test about the population mean uses the F distribution. The F statistic is basically

a ratio of two variances, F = s1
2 / s2

2. F can test different hypotheses by generating a

numerator variance that is sensitive to deviations from the null hypothesis and a

denominator variance that represents random variation or noise. If F is too large (it can

never be negative), then the null hypothesis is rejected.

The denominator variance in the present case is simply the sample variance sy
2 (called var in the 

simulation). This represents random or error variation about the sample mean. For the numerator variance,

square the deviation of the sample mean from the hypothesized

value, and multiply by n, the number of observations (see Box 2-3).

That is, s2
Numerator = n × (ȳ - �0)

2, where �0 is the hypothesized value.

Both the numerator and denominator will be positive, and so will F.

The greater the distance between ȳ and �0, the greater the variance

in the numerator and the greater the value for F. For the SPSS

simulation, the calculation is:

COMPUTE f = (9*(mean-3.82353)**2)/var.

The distribution of the 10,000 Fs is shown in Figure 2-3. All

F values are positive, and the distribution is highly skewed (i.e., not

symmetrical, but with a long tail to the right). One sample produced
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Intermediate Regression Analysis 2.4

F = 55.56, an extremely large value. The critical value for F depends on df for the numerator and df for the

denominator, 1 and 9-1 here. The F table gives F = 5.32 as the critical value for � = .05 with df = 1 for the

numerator and df = 8 for the denominator. In fact, 5.3% of the 10,000 Fs were greater than or equal to that

value, close to what is expected when the H0 is true and the same percentage as for the t distribution.

The t and F tests are equivalent when dfNumerator for F is 1, as for the single sample test for �.

Specifically, the observed value t equals the square root of the observed F (conversely, F = t2). Similarly, the

critical value for t, 2.306, equals the square root of the critical value for F, 5.32 (conversely, 5.32 = 2.3062).

The two tests lead to the same conclusion because if tObserved > t�, then FObserved > F� (i.e., t2
Obs > t�

2). One way to

think about this relationship is that the F distribution sometimes equals the t distribution “folded” over its

middle value of 0. That is, the negative side of the t distribution overlaps the positive side, hence F = t2.

The preceding demonstrations examined the distribution of statistics when the null hypothesis is true.

If the null hypothesis is false, then the probability of extreme values for z, t, or F is greater than when the null

is true. For example, if we hypothesized H0 � = 4.5, then the command,

COMPUTE t = (mean - 4.5)/(std/SQRT(9))

produces more extreme values because the sampling distribution of t is no longer centered at H0. In fact,

25.7% of these ts fall outside the critical values of -2.306 and +2.306, and would correctly reject the null. For

the other 74.3% of samples, H0 is not rejected, giving a Type II Error (i.e., fail to reject false null hypothesis).

SPSS can perform these tests about the mean, as shown below for the sample used last class. Assume

the hypothesis that students on average would give the question a rating of 5 or greater. The value of 5

becomes our null hypothesis. The sample data is entered the same way as before.

DATA LIST FREE / y.

BEGIN DATA

2 4 3 5 5 4 4 4 5

END DATA.

Below is SPSS’s TTEST command for testing an hypothesis about a single mean. The observed t

value is -3.00, which falls in the rejection region given the critical value of t determined earlier, t� = ±2.306.

Equivalently, the observed probability of .017 in the Sig. column is less than � = .05, which means the null

hypothesis that � = 5.0 can be rejected. The significance (Sig.) indicates how likely our observed ȳ is given �

= 5.0. Namely, p(tobs � -3.00 OR tobs � +3.00 IF Ho is true) = .017.
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Figure 2-4.

TTEST /TESTVALUE = 5 /VARIABLE = y.

   N Mean   Std. Deviation Std. Error Mean 
 y 9 4.0000 1.00000        .33333          

   Test Value = 5                                            
   t         df Sig.       Mean      
                (2-tailed) Difference
 y -3.000    8  .017       -1.00000  

Calculations (see Box 2-2):  t = (4.0 - 5.0) / (1.0/SQRT(9)) = -1.0 / .3333 = -3.00

df = n - 1 = 8

Figure 2-4 shows the relationship between tObserved falling in the rejection

region (i.e., greater than tCritical) and pObserved being less than �. The values are shown

just for the right side (tail) of the t distribution; the left tail (-2.306) would be

equivalent. The pObserved value .0085 = .017/2 because .017 includes both tails of the

distribution. As illustrated, whenever tObserved is greater than tCritical, pObserved will be

less than �. In the present case, tObserved = +3.00 > tCritical = +2.306 and half of pObserved

= .0085 < �/2. In terms of both tails, pObserved = .017 < � = .05.

Using SPSS to calculate the significance of the F statistic for this test

requires a little “trick.” GLM and other ANOVA commands can test the

significance of an observed mean relative to a hypothesized value of 0, but not to

some non-zero value (e.g., 5.0). To get around this limitation, subtract 5.0 from the scores and test whether

the new scores differ from 0, as shown below. To determine whether to reject the null hypothesis that � = 5.0,

compare F = 9.0 to the critical value of 5.32 or the observed significance of .017 to � = .05. Using either

approach, the null hypothesis is rejected. The equivalence of the t and F tests appears below.

COMPUTE yminus5 = y - 5.

GLM yminus5 /PRINT = DESCRIPTIVES.

 Mean    Std. Deviation N 
 -1.0000 1.00000        9 

 Source          Type III Sum of df Mean Square F     Sig. 
                 Squares                                   
 Corrected Model .000(a)         0  .           .     .    

 Intercept       9.000           1  9.000       9.000 .017 
 Error           8.000           8  1.000                  

 Total           17.000          9                         
 Corrected Total 8.000           8                         

Calculations (see Box 2-3):  F = {9×(4.0-5.0)2}/s2 = 9.0/1.0 = 9.0

df = 1, n - 1

Equivalence of F & t: both p values (Sig) = .017

t2 = -3.02 = 9.0 = F, OR SQRT(F) = SQRT(9) = 3.0 = t
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Intermediate Regression Analysis 2.6

Box 2-4. Independent t-test. 

Hypothesis Testing for Relationships: Difference Between Two Independent Means

Researchers develop theories and hypotheses to identify independent variables that can explain

variation (i.e., SS) in a dependent variable of interest. Independent variables are also called predictors, and

dependent variables can also be called criterion or outcome variables. Statistically, independent variables can

be naturally occurring (e.g., gender, age) or experimental (e.g., treatment vs control, time given to study list

of words). Independent variables can also be categorical (e.g., gender, treatment vs control) or numerical

(e.g., age, time to study list of words). The critical factor in deciding about the appropriate statistical analysis

of relationships between independent and dependent variables is whether the independent variable is

categorical or numerical, not whether it is experimental or not.

For categorical predictors, researchers test whether scores for two or more samples of observations

come from the same population (i.e., no difference between population means) or from different populations

(i.e., different population means). In some studies observations in the two samples are related to one another

(e.g., pre-test versus post-test scores from the same subjects). In other studies, scores are obtained from two

samples that are unrelated or independent (e.g., control versus treatment groups to which people were

randomly assigned). Here t and F are used to test the difference between two means for independent samples.

Two samples of five observations each were drawn from the population of 51 ratings (i.e., the two

samples come from populations with the same mean; � = 3.82353). Data for the two samples are shown

below, along with calculations required for the independent groups t-test (see Box 2-4).

The independent groups t-test tests whether the sample means ȳ1

and ȳ2 are sufficiently different to reject the H0: �1 = �2 or its equivalent

�1 - �2 = 0. The numerator is how far from 0 is the difference between

sample means. The denominator is the standard error of the difference

between means and tests whether the numerator difference is further than

expected by chance from the hypothesized value of 0; for example, in

less than 5% of random samples if � = .05. Box 2-4 shows the formula to

calculate the pooled variance, sp
2, as the sum of the SSs for the two groups in the numerator and the sum of

the dfs in the denominator. The rationale for this is that sp
2 is a better estimate of �2 than the separate sample

variances. This value and the ns are used to calculate SEȳ1-ȳ2 , the denominator for t in Box 2-4. 
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Figure 2-5. Distribution of ȳ1 - ȳ2.

G1 G2
2 4
4 4
3 4
5 5
5 6

ȳ1 3.80 ȳ2 4.60
SS1 6.80 SS2 3.20

sp
2 = (SS1 + SS2) / (df1 + df2) = (6.80 + 3.20) / [(5 - 1)+(5 - 1)]

= 10.0 / 8 = 1.25

SE = SQRT{1.25(1/5+1/5)} = .7071

tObs = (3.80 - 4.60) / .7071 = -0.80 / .7071 = -1.13

df = (5-1) + (5 - 1) = 5 + 5 - 2 = 8

SPSS requires two variables, one to indicate the group (1 or 2) and the second for y, the dependent

variable. The following commands enter the data and perform an independent groups t-test.

DATA LIST FREE / group y.

BEGIN DATA

1 2 1 4 1 3 1 5 1 5 2 4 2 4 2 4 2 5 2 6

END DATA.

TTEST /GROUP = group /VARIABLE = y.

   group N Mean   Std. Deviation Std. Error Mean 

 y 1.00  5 3.8000 1.30384        .58310 SS1 = (n1-1)*s1
2 = (5-1)*1.303842 = 6.80

   2.00  5 4.6000 .89443         .40000          

                   Levene's Test for    t-test for Equality of Means

                   Equality of

                   Variances

                   F          Sig. t               df    Sig.       Mean       Std. Error

                                                         (2-tailed) Difference Difference

 y Equal variances 1.024      .341 -1.131          8     .291       -.80000    .70711    

   assumed

   Equal variances                 -1.131          7.082 .295       -.80000    .70711

   not assumed

The initial output reports descriptive statistics for the

samples and provides everything required for the independent t-

test, namely sample means and standard deviations that can be

converted to SSs. The relevant results in the test section are in

bold: observed t, df, mean difference (numerator), and standard

error (denominator), and significance. The significance

indicates that the probability t is � -1.131 or � +1.131 is .291 >

.05 if H0 is true. Also, tObserved is not � 2.306 or � -2.306, tCritical,

df = n1 + n2 -1 = 8. Therefore we do not reject the H0. Two

elements in the output are ignored here: the F and Sig. for
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Box 2-5.

Figure 2-5. Sampling Distribution of t.

Levene’s test for the Equality of Variances and the t test in the second row for Equal variances not assumed.

Both have to do with the assumption that it is reasonable to aggregate the separate variances to calculate the

pooled variance.

Figure 2-5 shows the sampling distribution of dif = ȳ1 - ȳ2 for 10,000 samples selected from the

population. The mean dif is 0, as expected, but the sample means vary, with sdif = 1.0885, close to the

expected value for the variability in the difference between means when � is known:

   �dif = SQRT{�2(1/n1+1/n2)} = SQRT{2.9482(1/5+1/5)} 

= 1.086

Because � is generally unknown, it must be estimated from the sample standard deviations or

variances. The formula in Box 2-4 produces sp
2, a pooled estimate of the population variance, which is used

to calculate SEȳ1 - ȳ2 and tObserved.

Figure 2-5 shows the sampling distribution of tObserved for

the 10,000 samples. The mean t is 0, as expected, but st is greater

than 1.0, which is what the standard deviation would be if we

had calculated a z statistic using �2 instead of sp
2. With df = 5 +

5 - 2 = 8, a nondirectional test, and � = .05 (i.e., a = .05/2 =

.025), tCritical = ±2.306. We do not reject H0: �1 = �2 for our

sample with t = -1.13. In fact, only 5.2% of the 10,000 ts are

significant, very close to the theoretically expected percentage of

Type I errors; that is, differences between means large enough to

reject H0 even though H0 is true.

Independent Groups F test (Analysis of Variance)

The two means can also be compared by an F test (i.e.,

Analysis of Variance or ANOVA), with a numerator variance to

represent the difference between means, and a denominator variance

to represent random or error variation (see Box 2-5). The denominator

is sp
2, as calculated earlier. The numerator is based on the deviation of

sample means from the overall (Grand) mean; ȳG is the grand mean

averaged across groups. The number of groups is k (2 here) and j is an

index for the groups; ȳj, for example, represents ȳ for each group; j = 1 and 2 for two groups.
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Intermediate Regression Analysis 2.9

Group (j) ȳj ȳj - ȳGrand nj

j=1    ȳ1 3.80  ȳ1 - ȳG -0.40 n1 5
j=2    ȳ2 4.60  ȳ2 - ȳG +0.40 n2 5

ȳGrand 4.20      N 10

SSNum = nj�(ȳj - ȳG)
2 = 5×(-0.402 + 0.402) = 5×.32 = 1.60 df = 2-1 = 1

s2
Num = SSNum/df = 1.60/(2-1) = 1.60

FObserved = s
2
Num/sp

2 = (5×.32)/1.25 = 1.6/1.25 = 1.28   (�1.28 = 1.13 = tObs)

df = k-1, N-k (k = # groups and N = total # subjects across all groups)

   = 2 -1, 10 - 2 = 1, 8 FCritical = 5.32 (= 2.306
2 = tCritical

2)

The F-test is equivalent to a t-test when there are two groups (i.e., dfNumerator = 2 - 1 = 1) and leads to

the same conclusion. However, F can be used with more than two groups. Several SPSS commands perform

ANOVA, including GLM and MANOVA.

GLM y BY group /PRINT = DESCR.

 group Mean   Std. Deviation N  
 1.00  3.8000 1.30384        5  
 2.00  4.6000 .89443         5  
 Total 4.2000 1.13529        10 

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares                                     
 Corrected Model 1.600(a)        1  1.600       1.280   .291 
 Intercept       176.400         1  176.400     141.120 .000 

 group           1.600           1  1.600       1.280   .291 

 Error           10.000          8  1.250                    

 Total           188.000         10                          

 Corrected Total 11.600          9

MANOVA y BY group(1 2) /PRINT = CELL.

 Cell Means and Standard Deviations
      FACTOR           CODE                  Mean  Std. Dev.          N  
  group                  1                  3.800      1.304          5  
  group                  2                  4.600       .894          5  
 For entire sample                          4.200      1.135         10  

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              10.00       8      1.25

 group                      1.60       1      1.60      1.28      .291

 (Model)                    1.60       1      1.60      1.28      .291
 (Total)                   11.60       9      1.29
 R-Squared =           .138  Adjusted R-Squared =  .030

There is one important aspect of the analysis that merits emphasis. Not that SSTotal (Corrected Total in

GLM) is 11.60, which is the sum of SSGroup and SSError, also referred to as SSBetween and SSWithin in ANOVA.

The value of 11.60 is the total variability in the 10 scores, which can be calculated from the standard
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Figure 2-6. Nondirectional & Directional
Hypothesis Testing.

deviation for all 10 scores. SSTotal is partitioned (divided) into variability between groups and variability

within groups.

SSGroup + SSError = SSTotal = (10-1)1.13529
2 = 11.60 = 1.60 + 10.00

General Schema for Hypothesis Testing

Given several examples of statistical tests, now is a good time to develop more specifically a general

template for hypothesis testing. The Null Hypothesis involves a parameter or statistic for the population from

which samples are theoretically selected (e.g., µ, µ1 - µ2, �
2, �, ...), where � (rho) represents the population

correlation coefficient covered in the next chapter.

H0: µ = µ0, µ1 = µ2, � = 0, ...

The Alternative Hypothesis is an expectation about the parameter if the null hypothesis is false. This

may be a general hypothesis that H0 is false, or a more specific prediction based on past research or theory.

Ha: µ � µ0, µ > µ0, µ1 � µ2, µ1 < µ2, � > 0, ...

To decide between the Null and Alternative Hypotheses, researchers calculate a sample statistic that

estimates the population parameter and a measure of the variability expected in the sample statistic (i.e., the

standard deviation or standard error of the sampling distribution for the statistic). These values are used to

compute an inferential statistic (e.g., t or F) to determine the probability that the observed statistic or a more

extreme value would occur if the Null Hypothesis was true. For example, p(t � tObserved) IF H0 true.

If the observed outcome is too unexpected if the null hypothesis is true (i.e., it’s probability is low),

then the H0 may be rejected and the Ha accepted. A standard value for “too unexpected” is � = .05, although

sometimes smaller or larger values are used for �. The value alpha, �, represents the probability of a Type I

Error = p(Reject H0 IF H0 true). The H0 is rejected and Ha accepted if pObserved � �, or if the observed test

statistic is more extreme than the critical value corresponding

to �; for example, p(tObserved �-tCritical OR tObserved � +tCritical) IF

H0 true.

A final detail concerns the alternative hypothesis and

what outcomes lead researchers to reject the null and accept

the alternative hypothesis. A nondirectional Ha means

researchers have no prediction about the direction of

difference. For nondirectional t tests (e.g., Ha: µ � µ0), � is

divided between both tails of the t distribution (top image in

Figure 2-6). The critical value of t is found in the column for

�/2 because the table only represents one end of the
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distribution. The equivalent significance reported by SPSS equals alpha, the sum of the probabilities from

both ends of the distribution. The F test is normally nondirectional. Recall that F = t2, which translates to the

negative half of the t distribution being folded over (i.e., it becomes positive) so that both ends of the t

distribution are in the right tail of the F distribution. Non-directional tests are often referred to as two-tailed

(see SPSS t-test output), which is accurate for t but not for F because both tails of the t distribution are in one

tail (the positive tail) of F.

For directional t tests (e.g., Ha: µ > µ0), all of � is in one tail of the distribution (bottom image in

Figure 2-6). The critical value of t in the table is in the column equal to � and the nondirectional significance

reported by SPSS must be divided by two to obtain the one-tailed probability. Determining critical values of

F for directional tests can be confusing but the significance reported by SPSS is divided by two. In essence to

obtain critical values of F for directional tests from a table, keep in mind that both ends of the t distribution

are in the positive tail of the F distribution. It also helps to keep in mind that F = t2.

The preceding tests allow researchers to determine whether there is a relationship between a

categorical predictor variable and a numerical dependent variable. Researchers often want to examine

relationships for numerical predictors as well. The appropriate tests are described next. Appendix 2-1

presents sample data to practice some of the tests.
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APPENDIX 2-1

PRACTICE DATA FOR INDEPENDENT GROUPS T-TEST AND F-TEST  

The data below can be used to practice the various calculations for the preceding tests. The columns are:
EFF difference between population means: 0, 1, or 2 units
NJ number of observations per group
M# mean for group 1 or 2 SD# standard deviation for group 1 or 2
VARP pooled variance SE standard error of difference between means
t observed t statistic; F = t2 to practice F calculation
p probability of t as extreme as observed t or more extreme
TCRIT critical value of t given df; Fcritical = t2

Critical

SIG 1 if observed t significant, 0 if not significant

You can also calculate F from the following data. It should equal t2.

EFF  NJ       M1      SD1       M2      SD2     VARP       SE        t        p    tcrit SIG

  2   9    6.000    2.062    4.000    1.581    3.375      .87    2.309     .035    2.120   1

  2  18    6.556    1.617    3.722    1.742    2.825      .56    5.057     .000    2.032   1

  0   6    3.500    1.517    4.000    2.191    3.550     1.09    -.460     .656    2.228   0

  2  20    5.350    1.631    3.200    1.795    2.941      .54    3.965     .000    2.024   1

  2  13    5.692    1.750    4.692    1.932    3.397      .72    1.383     .179    2.064   0

  2  22    6.364    1.840    3.909    1.743    3.212      .54    4.542     .000    2.018   1

  0  10    4.400    1.174    2.900    1.370    1.628      .57    2.629     .017    2.101   1

  1  12    5.583    1.564    3.000    1.859    2.951      .70    3.684     .001    2.074   1

  1   9    5.000    2.236    3.889    1.269    3.306      .86    1.296     .213    2.120   0

  2  15    5.333    1.447    3.867    1.727    2.538      .58    2.521     .018    2.048   1

  0  15    4.067    1.624    3.933    1.223    2.067      .52     .254     .801    2.048   0

  2   6    5.167    1.472    3.500    1.761    2.633      .94    1.779     .106    2.228   0

  2   6    5.833    1.472    4.000    1.789    2.683      .95    1.938     .081    2.228   0

  1  22    4.045    1.618    4.182    1.967    3.244      .54    -.251     .803    2.018   0

  2  16    5.563    2.128    3.125    1.784    3.856      .69    3.511     .001    2.042   1

  0  15    2.867    1.552    4.333    1.877    2.967      .63   -2.332     .027    2.048   1

  0   5    4.800    1.643    3.800    2.168    3.700     1.22     .822     .435    2.306   0

  1  18    4.778    1.592    3.778    2.016    3.301      .61    1.651     .108    2.032   0

  1  10    4.100    1.197    4.400    1.430    1.739      .59    -.509     .617    2.101   0

  2  10    5.700    1.160    3.300    1.567    1.900      .62    3.893     .001    2.101   1

  1  17    4.765    1.985    5.000    1.323    2.846      .58    -.407     .687    2.037   0

  2  13    5.692    1.653    3.692    1.316    2.231      .59    3.414     .002    2.064   1

  0  11    3.636    1.567    3.636    2.248    3.755      .83     .000    1.000    2.086   0

  1  20    4.900    1.410    3.750    1.552    2.199      .47    2.453     .019    2.024   1

  1  15    5.133    1.506    3.867    2.100    3.338      .67    1.899     .068    2.048   0

  2  20    5.600    1.465    3.850    1.927    2.930      .54    3.233     .003    2.024   1

  1  19    5.211    1.903    3.421    1.774    3.383      .60    2.999     .005    2.028   1

  2  17    6.059    1.638    4.118    1.536    2.522      .54    3.564     .001    2.037   1

  1   7    6.000    1.826    3.714    1.380    2.619      .87    2.642     .021    2.179   1

  0   9    4.667    1.658    3.778    1.716    2.847      .80    1.117     .280    2.120   0

  2  12    6.167    1.193    3.667    1.723    2.197      .61    4.131     .000    2.074   1

  1  23    5.304    2.032    3.522    2.020    4.105      .60    2.984     .005    2.015   1

  1   9    4.222    1.093    4.444    1.333    1.486      .57    -.387     .704    2.120   0

  1  13    5.077    1.706    4.000    1.472    2.538      .62    1.723     .098    2.064   0

  0   9    3.444    1.424    3.889    1.269    1.819      .64    -.699     .495    2.120   0

  1  12    5.083    1.165    3.167    1.801    2.299      .62    3.096     .005    2.074   1

  0   9    4.111    1.900    3.556    1.130    2.444      .74     .754     .462    2.120   0

  2  12    6.083    1.311    4.917    1.621    2.174      .60    1.938     .066    2.074   0

  0   6    4.333    2.338    3.667    1.366    3.667     1.11     .603     .560    2.228   0

  2  22    6.091    1.509    3.909    1.875    2.896      .51    4.252     .000    2.018   1

  0  16    4.188    1.424    3.438    1.632    2.346      .54    1.385     .176    2.042   0

  0   5    4.200    2.168    3.000    1.581    3.600     1.20    1.000     .347    2.306   0

  0  17    3.588    1.622    3.529    1.505    2.449      .54     .110     .913    2.037   0

  0  11    4.455    2.252    4.182    1.401    3.518      .80     .341     .737    2.086   0

  1  23    4.565    1.805    3.435    1.903    3.439      .55    2.067     .045    2.015   1

  0   5    3.400    1.140    4.400    1.517    1.800      .85   -1.179     .272    2.306   0

  1  21    5.190    1.940    4.095    1.300    2.726      .51    2.149     .038    2.021   1

  0  20    4.000    1.835    3.250    1.618    2.993      .55    1.371     .178    2.024   0
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Intermediate Regression Analysis 3.1

Figure 3-1. Scattergram of y as a function of x.

CHAPTER 3 - NUMERICAL PREDICTORS

The independent groups t-test concerns differences between means; that is, a relationship between a

categorical predictor (group) and a numerical dependent variable. But researchers also study numerical

predictors to determine whether scores on a numerical predictor X are associated with an increase or a

decrease in scores on Y. That is, do the variables correlate rather than do their means differ. This analysis

requires pairs of numerical scores corresponding to X and Y. Variables can correlate whether or not there are

differences between means or it would be meaningless to compare means (e.g., IQ as a predictor of GPA). 

The following commands enter 9 pairs of X, Y scores to produce the first two columns in the listing

below and construct the graph of the relationship between x and y shown in Figure 3-1. Menu commands for

the graph are: Graph | Legacy Dialogs | Scatter/Dot | Simple Scatter | Define | y � y axis | x � x axis | OK. A

double-click on the resulting graph opens the Chart Editor, which can be used to modify the default graph.

DATA LIST FREE /x y .

BEGIN DATA

7  5    3  2    4  3    3  5    4  3    6  7    2  3    5  6    2  2

END DATA.

GRAPH SCATTER(BIVARIATE) x WITH y.

The vertical solid line in Figure 3-1 is x� = 4.0

and the horizontal solid line is ȳ = 4.0. The means

create four quadrants. The cross-product (x-x�)×(y-ȳ) is

positive for observations in the lower-left or upper-right

quadrants, and negative for the upper-left or lower-right

quadrants. Therefore, the sum of cross-products (SCP)

will be positive when most CPs are positive, negative

when most CPs are negative, and about 0 when CPs are

scattered across all four quadrants. SCP is used to

calculate correlation and regression statistics. The

following SPSS commands compute SSx, SSy, and SCP. 

COMPUTE xdev = x - 4.0. (x-x�)

COMPUTE ydev = y - 4.0. (y-ȳ)

COMPUTE xdev2 = xdev**2. (x-x�)2

COMPUTE ydev2 = ydev**2. (y-ȳ)2

COMPUTE cp = xdev*ydev. (x-x�)(y-ȳ)
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Box 3-1.

Box 3-2.

LIST x y xdev ydev cp.

     x      y   xdev   ydev     cp
  7.00   5.00   3.00   1.00   3.00
  3.00   2.00  -1.00  -2.00   2.00
  4.00   3.00    .00  -1.00    .00
  3.00   5.00  -1.00   1.00  -1.00
  4.00   3.00    .00  -1.00    .00
  6.00   7.00   2.00   3.00   6.00
  2.00   3.00  -2.00  -1.00   2.00
  5.00   6.00   1.00   2.00   2.00
  2.00   2.00  -2.00  -2.00   4.00

 DESCR xdev2 ydev2 cp /STAT = SUM.

                 N Sum   

 xdev2           9 24.00 = SSx

 ydev2           9 26.00 = SSy

 cp              9 18.00 = SCP = �(x-x�)(y-ȳ)

These quantities are used to calculate the correlation coefficient r, as shown

in Box 3-1. The value of r varies between -1 and +1; that is, -1 � r � +1. For the

present data, r = 18.0/SQRT{24.0×26.0} = .7206. The following command calculates r and its significance,

described shortly. Figure 3-1 reported r2 = .519 = .72062
.

CORRELATION x y.

                   x    y    

 x Pearson         1    .721 r = 18.0/SQRT{24×26}

   Sig. (2-tailed) .    .029 Sig < .05, therefore reject H0 (test shown later)

The relationship between X and Y can also be conceptualized in terms of

the dashed regression line shown in Figure 3-1. Points on the line are predicted

values for Y given different values for X and the linear relationship between X

and Y. The best-fit line minimizes the difference between predicted and observed values. The formula for a

line is determined by its slope and intercept. The slope is the amount of change in Y per unit change in X, and

the intercept is the predicted value when X = 0. Box 3-2 shows the formula for the slope and intercept of the

best-fit line; the slope uses SCP in the numerator, like the formula for r.

b1 = 18.0 / 24.0 = .75 b0 = 4.0 - .75 × 4.0 = 1.0

The best-fit regression line is: y� = b0 + b1 x = 1.0 + .75x, where y� is the predicted value (i.e., points on

the line for each subject). This is the formula for the dashed line in Figure 3-1. The following SPSS

commands produce the best-fit regression line and other statistics. The intercept and slope appear in the

Unstandardized Coefficients column. The SAVE command adds predicted y�s (prd) and residual scores (res)

to the dataset, res being the deviation of observed from predicted scores (i.e., y - y�). These appear in columns

three and four in the listing below.
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Figure 3-2.

REGRESSION DEPENDENT = y /ENTER x /SAVE PRED(prd) RESID(res).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .721(a) .519     .451            1.33631         

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 13.500         1  13.500      7.560 .029(a) 
       Residual   12.500         7  1.786                     
       Total      26.000         8                            

 Model            Unstandardized             Standardized    t     Sig. 
                  Coefficients               Coefficients               
                  B               Std. Error Beta                       

 1     (Constant) 1.000           1.179                      .849  .424 

       x           .750            .273       .721           2.750 .029 

Residuals Statistics(a)
                 Mean    Std. Deviation N 

 Predicted Value 4.0000  1.29904        9  SSPrd = (9-1)1.29904
2 = 13.50

 Residual         .0000  1.25000        9  SSRes = (9-1)1.25000
2 = 12.50

LIST x, y, prd, res.

     x      y         prd         res

  7.00   5.00     6.25000    -1.25000 y�1 = 1.0 + .75×7.0 = 6.25

  3.00   2.00     3.25000    -1.25000 Y1 - y�1
'= 5.0 - 6.25 = -1.25

  4.00   3.00     4.00000    -1.00000
  3.00   5.00     3.25000     1.75000
  4.00   3.00     4.00000    -1.00000
  6.00   7.00     5.50000     1.50000
  2.00   3.00     2.50000      .50000
  5.00   6.00     4.75000     1.25000
  2.00   2.00     2.50000     -.50000

The predicted scores y� are obtained by entering values for X into the prediction equation, and the

residual scores by subtracting predicted from observed scores (i.e., y - y�). These operations are shown above

for the first subject. Given predicted and residual scores it is possible to calculate SSs from the standard

deviations shown in the Residuals Statistics section of the output. As shown above, SSPredicted = 13.50 = �(y�-

ȳ)2 and SSResidual = 12.50 = �(y-y�)2. SSPredicted is also referred to as SSRegression, and SSResidual as SSError. These

quantities appear in the Sum of Squares column in the output.

Notice that SSy = 26.0 = SSTotal has been partitioned (divided) into what can be

predicted using X, SSRegression = 13.5, and what cannot be predicted, SSResidual = 12.5. Figure

3-2 represents the partitioning of SSTotal as a Venn diagram. The circle Y represents SSTotal

and the overlap represents how much of the total is predicted by X. As a proportion, the

predictor X accounts for SSy�/SSy = 13.5/26.0 = .519 of the total variability in y. This

quantity is r2 = .7212 = .520. R and R2 appear in the output above and reflect the strength of the relationship

between X and Y in terms of r (between -1 and +1) or, more precisely, r2, the proportion of variability in Y
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Box 3-3.

Box 3-4.

predicted by X.

The result of the present analysis is a best-fit regression line. The idea of best-fit is analogous to the

mean being the best measure of central tendency. Recall that the sum of the deviations of scores about the

mean equals 0; that is, �(y-ȳ) = 0. In regression, the sum of the deviations of observed scores about the

predicted values equals 0; that is, �(y-y�) = 0. Note in the regression analysis that the mean residual score is 0

because the sum of the residual scores is 0. Deviations above and below the line balance. A second way to

think of the mean as a good measure of average is that SSy = �(y-ȳ)2 = a minimum. No other value comes as

close to all the scores in terms of squared deviations. Similarly, the best-fit regression line minimizes

SSResidual; that is, �(y-y�)2 = a minimum. No other line comes as close to the observed scores in terms of

squared deviations. The claim of best-fit is specific to a straight line fit. It is possible that an equation for a

curve could do a better job predicting the scores. Nonlinear regression is examined in a later chapter.

Significance of Regression and Correlation

In addition to the strength of the relationship, researchers are interested in its

significance because a strong relationship can be not significant (i.e., can occur by

chance) and a weak relationship can be significant. For a single predictor X, there are

several equivalent tests that the correlation in the population, denoted by the Greek

letter rho (�), is 0 (see Box 3-3). The various tests reflect different relationships when

there is more than one predictor as demonstrated in later chapters.

First, the correlation coefficient r can be tested for significance using a t-test. The formula is shown in

Box 3-3 and the calculations follow. For the present sample, the null hypothesis that the population

correlation coefficient (�) equals 0 is rejected.

t =(r-0)/SQRT{(1-r2)/(n-2)} = .721/SQRT{(1-.7212)/(9-2)} = .721/.2619 = 2.75

df = n - 2 = 9 - 2 = 7

Nondirectional, � = .05, tCritical = ±2.365

tObserved > +tCritical Reject H0, Accept Ha

The correlation coefficient r can also be tested for significance

using an F test based on SSRegression and SSResidual or on r2 and (1-r2), as

shown in Box 3-4, where p = the number of predictors, 1 in the

present case. Calculations appear below and the result appears on the

Regression line of the output.
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Box 3-5.

�
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Figure 3-3. Partition of y.

Figure 3-4. Sampling distribution of r.

F = (r2/p)/{(1-r2)/(n-p-1)} = (.7212/1)/{(1 - .7212)/(9-1-1)}

  = .5198/.0686 = 7.578 = 2.752 = tr
2

df = 1, 7    FCritical = 5.59 = t
2
Critical Reject H0: �

2 = 0, Accept Ha

Third, the regression coefficient b1 can be tested for significance using the t-

test shown in Box 3-5. The result appears on the Coefficient line for X.

tb1 = (b1-0)/SQRT{MSRes/SSx} = .750/SQRT{1.786/24}

   = .750/.2728 = 2.75 = tr

Regression can also be conceptualized in terms of relationships among the

original X and Y variables and the new variables, y� and y - y�. The following SPSS commands produce the rs

among the four variables and the relationships are represented in

Figure 3-3. Let’s examine the six correlations. The r between x and y�

is 1 and between x and y - y� is 0 because any variability in y related

to x goes to y�, the points on the best fit line, and none goes to y - y�.

By the same reasoning, the r between y� and y - y� is also 0. Because x

and y� correlated perfectly, the r between y and y� equals the r

between x and y, our original correlation coefficient. The variability

in y has been divided between y� and y - y�; the proportion accounted for by y� equals r2 = .7212 = .52, and the

proportion accounted for by y - y� equals 1- r2 = 1 - .52 = .48. The square root of 1 - r2 = .693, as shown below.

Observe that .7212 + .6932 = 1 because y� and y - y� account for all of the variability in y given y = y� + (y - y�).

The fact that the correlation between x and y - y� is 0 will be important for understanding aspects of multiple

regression. In general, residual scores from a regression will

be uncorrelated with any predictors in the equation.  

VARIABLE LABEL prd '' res ''.

CORRELATION y x prd res /STATISTICS.

     Mean      Std. Deviation N 
 y   4.0000    1.80278        9 

 x   4.0000    1.73205        9 

 prd 4.0000000 1.29903811     9 MPred = 4.0 = ȳ

 res .0000000  1.25000000     9 MRes = 0.0
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Figure 3-5. Sampling distribution of t.

          y     x       prd
 x        .721 

 prd      .721  1.000 

 res      .693   .000   .000

Sampling Distributions for Test Statistics

The logic of the three tests (tr, tb1, F) can be illustrated with a simulation. Figure 3-4 shows the

frequency distribution of 100,000 rs calculated for our samples. As expected since the population correlation

coefficient � is 0, the mean of the rs is .00009 � 0. That is, EV(r) = �. But there is variability about this value.

Indeed r is occasionally close to -1 and +1, indicating a perfect relationship between X and Y. To determine

whether a given r is significant, we calculate a t test.

Figure 3-5 shows the distribution of the 100,000 ts

calculated using the formula for either r or b1. Again as

expected, the mean of all the ts is equal to 0, but there is

variability about this value. It turns out that exactly 5% of the

ts were �-2.365 OR �+2.365, as expected given H0 is true.

Our sample was one of the 5% that (wrongly) produced a

significant t. That is, our conclusion was a Type I error;

rejecting a true H0. A simulation of F would show the same

result.

Dependent t-test for Difference Between Means

The independent t-test compared means from two

unrelated samples. That is, scores in the two groups are not expected to correlate with one another. A

dependent or paired-difference t-test compares two means when scores in the two sets are expected to

correlate, either because observations come from the same subjects (e.g., pre versus post treatment), or

because of a pre-existing relationship between subjects (e.g., twins, animals from same litter, matched

subjects). The proper test is a modified single sample t-test of difference scores obtained by subtracting

individual scores in one group from those in the other group (see Box 3-6). If the null hypothesis is true, the

mean of the difference scores should equal 0.
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Box 3-6.

Pre Post D=Post-Pre
7 7  0 H0: �D = 0
3 4 +1
4 5 +1 Ha: �D � 0 or �D > 0 or �D < 0
3 7 +4

4 5 +1     t = (MD - 0) / (sD/�nD)
6 9 +3
2 5 +3 = (2.0 - 0) / (1.3228/�9)
5 8 +3 = 2.0 / .4410
2 4 +2 = 4.535 df = nD - 1 = 8

�D = 18.0 MD = 18/9 = 2.00 sD = 1.3228

DATA LIST FREE / pre post.

BEGIN DATA

 7 7    3 4    4 5    3 7    4 5    6 9    2 5    5 8    2 4

END DATA.

COMPUTE diff = post - pre.

TTEST /TESTVALUE = 0 /VARI = diff.

      N Mean  Std. Deviation Std. Error Mean 

 diff 9 2.000 1.32288        .44096          

      Test Value = 0                                            
      t         df Sig.       Mean      
                   (2-tailed) Difference

 diff 4.536      8  .002      2.0000

SPSS can do the paired-difference test without computing difference scores. The modified TTEST

command is:

TTEST PAIR pre post.

           Mean   N Std. Deviation Std. Error Mean 

 Pair Pre  4.0000 9 1.73205        .57735          
      Post 6.0000 9 1.80278        .60093          

                N Correlation Sig. 
 Pair 1 y1 & y2 9 .721        .029 

                 Mean           Std.     Std. Error t      df Sig.       

                               Deviation Mean         (2-tailed) 

 Pair 1 Pre-Post 2.0000        1.32288   .44096    4.536  8  .002      

The expectation for the dependent or paired-difference t is that scores for the two samples will

correlate. The standard deviation of the difference scores depends on r, as well as on the original variability in

the two sets of scores. Specifically,

sD
2 = s1

2 + s2
2 - 2×r12 × s1 × s2 

         = 1.732052 + 1.802782 - 2×.721 × 1.73205 × 1.80278

         = 1.7474

sD = SQRT{1.7474} = 1.322
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To the extent that the scores do correlate, variability in the difference scores will be less than the

variability in the original scores, resulting in a smaller denominator for the dependent t than for the

independent t. In the present case:

SED = .44096  <  SEȳ1-ȳ2 = SQRT{sp
2(1/n1+1/n2)} = .8333

Since the numerators for the two ts are identical because ȳD = ȳ1 - ȳ2, the dependent t will generally be

larger than the independent t. At the same time, the df for the dependent t will be nD - 1, smaller than df = n1

+ n2 - 2 for the independent t. A smaller df means that the critical value will be somewhat larger for the

dependent t. The gain from the smaller SE is expected to offset the loss of degrees of freedom, especially

when n is large. The independent groups analyses from earlier are repeated below. As expected given the SE

is larger, the independent t is smaller, and its p value larger.

*Independent Scores Analyses (t and F).

DATA LIST FREE / grp y.

BEGIN DATA

 1 7   1 3   1 4   1 3   1 4   1 6   1 2   1 5   1 2  

 2 7   2 4   2 5   2 7   2 5   2 9   2 5   2 8   2 4

END DATA.

TTEST /GROUP = grp /VARI = y.

 y 1.00 9 4.0000 1.73205        .57735          
   2.00 9 6.0000 1.80278        .60093          

                   t-test for Equality of Means

                   t               df     Sig.       Mean       Std. Error

                                          (2-tailed) Difference Difference

 y Equal variances-2.400            16     .029      -3.76659    .83333    

MANOVA y BY grp(1 2).

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              50.00      16      3.13

 grp                       18.00       1     18.00      5.76      .029

 (Total)                   68.00      17      2.94

Regression and Difference Between Independent Means

It might appear that tests for the difference between means and for regression are unrelated, but they

are actually equivalent in some cases, such as the independent groups design when dfNumerator = 2 - 1 = 1. The

following regression analysis demonstrates this. The predictor is a categorical variable grp that represents the

two groups (grp = 1 or 2) and the dependent variable is Y. Observe the many parallels between the regression

output and the independent groups t-test and corresponding ANOVA. Later material on ANOVA for more

complex designs (e.g., three or more groups) will explore this equivalence in greater depth.
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REGRE /DEP = y /ENTER grp /SAVE PRED(prd2) RESI(res2).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .514(a) .265      .219           1.76777         

 Model            Sum of Squares df Mean Square F      Sig.     

 1     Regression 18.000          1 18.000      5.760  .029(a) 

       Residual   50.000         16  3.125                     
       Total      68.000         17                           

 Model            Unstandardized             Standardized    t     Sig.  
                  Coefficients               Coefficients                
                  B               Std. Error Beta                        
 1     (Constant) 2.000           1.318                      1.518 .149  

       grp        2.000            .833       .514           2.400 .029 

Residuals Statistics(a)
                 Minimum  Maximum Mean   Std. Deviation N  
 Predicted Value 4.0000   6.0000  5.0000 1.02899        18 
 Residual        -2.00000 3.00000 .00000 1.71499        18 

VARIABLE LABEL prd2 '' res2 ''.

LIST.

   grp      y        prd2        res2
  1.00   7.00     4.00000     3.00000
  1.00   3.00     4.00000    -1.00000
  1.00   4.00     4.00000      .00000
  1.00   3.00     4.00000    -1.00000
  1.00   4.00     4.00000      .00000
  1.00   6.00     4.00000     2.00000
  1.00   2.00     4.00000    -2.00000
  1.00   5.00     4.00000     1.00000
  1.00   2.00     4.00000    -2.00000
  2.00   7.00     6.00000     1.00000
  2.00   4.00     6.00000    -2.00000
  2.00   5.00     6.00000    -1.00000
  2.00   7.00     6.00000     1.00000
  2.00   5.00     6.00000    -1.00000
  2.00   9.00     6.00000     3.00000
  2.00   5.00     6.00000    -1.00000
  2.00   8.00     6.00000     2.00000
  2.00   4.00     6.00000    -2.00000

Appendix 3-1 presents data with which to practice correlation and regression calculations. Appendix

3-2 presents some research scenarios to practice deciding about the appropriate test for different designs that

have been discussed.
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APPENDIX 3-1

CORRELATION & REGRESSION WITH SINGLE PREDICTOR

CALCULATION EXERCISE

Each line below shows statistics from 20 samples (s = 1 to 20) of x and y scores. N is the number of

observations in a sample. Use the formula sheet and the data below to calculate the correlation, the best fit

equation, and the strength and significance of the linear relationship. The raw data for each sample is shown

next and can be pasted into SPSS to do the analyses corresponding to your calculations. Omit s, n, and the

periods when entering the data. Here are the commands for sample 5.

DATA LIST FREE / x y.

BEGIN DATA

49 53 48 54 57 67 62 64 64 51 62 62

END DATA.

  S  N     Mx     My     SDx     SDy       SCP     r      b0    b1     t   SDreg   SDres Fcrit     F  Sig

  1  9 60.111 71.778 14.5640 12.5576  243.2222  .166  63.162  .143  .446  2.0875 12.3829  5.59  .199 .669

  2 11 58.364 59.455 10.2983  7.3398  -51.8182 -.069  62.306 -.049 -.206   .5626  8.1868  5.12  .042 .841

  3  7 67.714 62.000 14.5569 12.2610  -63.0000 -.059  65.355 -.050 -.132   .6247 10.6000  6.61  .017 .900

  4  7 57.000 63.286  9.3986 10.1442 -213.0000 -.372  86.193 -.402 -.897  3.2711  8.1534  6.61  .805 .411

  5  6 57.000 58.500  6.9857  6.6558   77.0000  .331  40.512  .316  .702  1.7428  4.9649  7.71  .493 .521

  6  9 53.222 63.556 10.8947  5.8119  375.8889  .742  42.487  .396 2.929  4.3128  3.8959  5.59 8.578 .022

  7  7 49.571 64.714 12.6736 16.5400  994.1429  .790  13.578 1.032 2.885 11.3222  8.7742  6.61 8.326 .034

  8 10 51.900 68.400 14.8283  7.3212  359.4000  .368  58.974  .182 1.119  2.8564  7.2209  5.32 1.252 .296

  9  6 51.833 74.167  5.6362 13.8912   90.1667  .230  44.742  .568  .473  2.5295 10.6867  7.71  .224 .661

 10 12 57.083 67.750 11.7509  8.1589   90.2500  .086  64.358  .059  .272   .8187  9.5321  4.96  .074 .791

 11 11 57.273 65.727 12.0340  9.0121   35.8182  .033  64.311  .025  .099   .3328 10.0704  5.12  .010 .923

 12  6 57.333 69.167  9.9130 11.5658  394.6667  .688  23.113  .803 1.899  6.2950  6.6315  7.71 3.604 .130

 13  6 52.000 63.833  9.3381 16.3758  -56.0000 -.073  70.512 -.128 -.147   .9482 12.9114  7.71  .022 .890

 14 11 53.545 66.818  9.5117 11.3386  319.0909  .296  47.933  .353  .929  3.7507 12.1094  5.12  .863 .377

 15 12 57.167 71.083 10.6757  8.9388  162.8333  .155  63.658  .130  .497  1.6260 10.3548  4.96  .247 .630

 16 12 49.667 61.667 12.6874 16.9670 1566.6667  .662  17.722  .885 2.790 13.1633 14.9185  4.96 7.785 .019

 17 10 54.900 59.500  7.9366 15.6223 -116.5000 -.104  70.782 -.206 -.297  1.7299 16.4794  5.32  .088 .774

 18  8 58.125 67.750 11.5194  8.6644   58.2500  .083  64.105  .063  .205   .6757  8.0766  5.99  .042 .844

 19 12 52.333 63.000 16.0189  8.6655  592.0000  .388  52.024  .210 1.330  3.9396  9.3664  4.96 1.769 .213

 20 12 55.083 62.000 12.9857 11.2412  119.0000  .074  58.466  .064  .235   .9769 13.1452  4.96  .055 .819

  s  n x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12

  1  9 41 66 74 45 65 77 59 74 45 63 77 79 70 81 70 88 40 73   .   .   .   .   .   .
  2 11 42 67 67 60 59 65 62 60 61 65 63 55 54 52 77 59 41 60  60  68  56  43   .   .
  3  7 66 65 73 54 89 57 40 63 67 49 67 59 72 87  .  .  .  .   .   .   .   .   .   .
  4  7 50 52 64 52 72 64 54 77 48 72 63 56 48 70  .  .  .  .   .   .   .   .   .   .
  5  6 49 53 48 54 57 67 62 64 64 51 62 62  .  .  .  .  .  .   .   .   .   .   .   .
  6  9 51 64 61 64 48 68 63 63 28 49 60 63 60 68 50 66 58 67   .   .   .   .   .   .
  7  7 58 70 39 70 63 77 39 37 35 47 47 69 66 83  .  .  .  .   .   .   .   .   .   .
  8 10 71 73 41 55 37 64 66 82 73 66 30 75 43 64 57 70 55 69  46  66   .   .   .   .
  9  6 58 63 49 94 47 69 54 77 58 85 45 57  .  .  .  .  .  .   .   .   .   .   .   .
 10 12 60 67 47 66 63 68 71 67 72 86 43 68 38 65 53 74 44 71  66  50  68  68  60  63
 11 11 68 76 33 68 67 79 64 65 53 76 74 52 60 63 41 55 59 64  59  56  52  69   .   .
 12  6 65 78 45 66 62 66 48 49 70 80 54 76  .  .  .  .  .  .   .   .   .   .   .   .
 13  6 68 60 51 95 51 65 43 59 56 47 43 57  .  .  .  .  .  .   .   .   .   .   .   .
 14 11 55 73 34 55 60 53 59 61 55 77 44 49 63 79 60 61 45 81  65  74  49  72   .   .
 15 12 51 73 59 59 72 79 53 57 38 80 67 72 50 69 62 81 63 85  62  69  41  64  68  65
 16 12 38 41 59 79 31 58 67 91 51 63 39 66 45 52 68 69 32 33  52  77  57  44  57  67
 17 10 61 89 51 55 53 60 51 33 60 45 37 74 66 49 55 65 55 59  60  66   .   .   .   .
 18  8 65 64 70 66 55 66 41 82 55 63 74 80 60 64 45 57  .  .   .   .   .   .   .   .
 19 12 55 77 54 55 72 76 58 69 48 64 65 55 24 67 45 62 58 60  25  48  48  57  76  66
 20 12 61 53 42 49 44 77 62 63 43 45 43 82 60 60 64 58 71 61  34  60  65  60  72  76
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Intermediate Regression Analysis 3.11

APPENDIX 3-2

WHICH TEST IS APPROPRIATE?

Given this review of several statistical tests, we can practice making decisions about what tests are

appropriate for different studies. Here are some brief descriptions of studies. Decide whether they require a

single sample test about means, an independent groups t-test, a paired-difference t-test, or a correlation and

regression analysis.

1. Educational researchers wanted to identify who would struggle in school. They administered an IQ test to

100 students entering grade 10 and recorded their GPA at the end of the year.

2. To determine whether a novel training program was effective for new employees, human resource

researchers assigned 15 new employees to the current training program, and 15 employees to the novel

program. Work performance was measured over the first two weeks on the job.

3. A science practitioner conducts a pilot study on a new treatment for anxiety. Anxiety was measured in 24

high anxiety people after the two-week therapy program. Norms for the test indicate that high anxiety people

score 45.0 on the test without any treatment. 

4. To test the hypothesis that old people will perform better on a memory test with practice, cognitive

researchers gave 36 people (average age of 75) two memory lists to learn. Each list contained 24 words. List

one was presented on day one, followed by 10 sessions of practice learning lists of words. List two was

presented on day two to see if performance differed from list one.
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Intermediate Regression Analysis 4.1

CHAPTER 4 - INTRODUCTION TO MULTIPLE REGRESSION

Most (all?) psychological phenomena depend on multiple factors that cause or are otherwise related to

human behaviour and experience. Analyses that include only a single predictor do not accurately reflect this

complexity. In a non-experimental study, researchers cannot know whether any relationship with the outcome

variable represents the influence of a predictor or is due to other correlated variables. Teasing apart such

confounds requires multiple regression analyses that include more than one predictor and control statistically

for confounding variables. Multiple regression (MR) is also a way to potentially test whether the relationship

between an outcome variable and a predictor is mediated by some other variable, sometimes represented as X

� M � Y, where M is the variable hypothesized to mediate the relationship between X and Y. In addition,

MR can test for interactions when the relationship between X and Y (that is, X � Y) is influenced by a third

variable. And inclusion of a second predictor that is unrelated to X can remove variability from SSResidual,

which gives a smaller denominator for hypothesis testing and measures of effect size.

The Multiple Regression Equation

Consider a study in which school psychologists hypothesized that more intelligent students use better

memory strategies than less intelligent students when learning academic material. To test this hypothesis,

nine students were administered an intelligence test, studied a chapter, and then were tested for use of

memory strategies while studying and for recall of material from the chapter. Scores for intelligence (int),

memory strategies (mem), and recall (rec) are entered into SPSS and then listed in the first three columns of

the following table. The last two columns show results generated by later analyses.

DATA LIST FREE / int mem rec.

BEGIN DATA
96  25 47 111  27 51 118  23 41 112  21 37  88  14 25  92  12 30 112  25 41  89  18 32 106  23 46

END DATA.

LIST.

int mem rec     prdr.im     resr.im

 96  25  47    45.72339     1.27661 y�1 = 9.605 - .04×96 + 1.598×25 = 45.72

111  27  51    48.32103     2.67897 y1 - y�1 = 47 - 45.72339 = 1.27661

118  23  41    41.65077     -.65077
112  21  37    38.69435    -1.69435
 88  14  25    28.46649    -3.46649
 92  12  30    25.11143     4.88857
112  25  41    45.08556    -4.08556
 89  18  32    34.81783    -2.81783
106  23  46    42.12914     3.87086

Simple correlations show that the two predictors are related to recall, but they also correlate with one

another. The 3-D plot in Figure 4-1 shows the inter-relationships. The left-right horizontal axis represents

Intelligence, the front-back horizontal axis is Memory Strategies, and the vertical axis is Recall. The

following command created the graph and could be generated by menu.
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Intermediate Regression Analysis 4.2

Figure 4-1. 3-D Plot

Box 4-1. Multiple
Regression Formula.

GRAPH /SCATTERPLOT(XYZ)=mem WITH rec WITH int.

The lines from observed recall scores to the floor are called

spikes and show that higher intelligence people used better strategies

than lower intelligence people; that is int and mem are confounded.

The relationship between recall and memory is confounded by

intelligence, and the relationship between recall and intelligence is

confounded by memory. Imagine looking down at the floor from

above. Note that scores cluster in the lower-left and upper-right

quadrants, indicating a positive correlation. The three relationships

correspond to the following correlations.

CORR rec int mem /STAT.

       Mean   Std. Deviation   N 
 rec  38.89     8.623          9 
 int 102.67    11.456          9 
 mem  20.89     5.183          9 

rec  int 
 int .630
 mem .923 .711

The correlation of .711 between the two predictors complicates interpretation of their relationship

with recall. MR can determine the combined and unique contribution of the predictors, which serves to test

the research hypothesis.

MR extends regression to designs in which multiple predictors are used to generate predicted scores

for the dependent variable. In the present case, both intelligence and memory strategy would be included in a

single regression equation. Box 4-1 shows the form of the equation, the calculation of the regression

coefficient for X1 (i.e., by1.2 or simply b1), and b0. The coefficient by2.1 for X2 would involve a rearrangement

of the correlation coefficients used to calculate by1.2.

The equation in Box 4-1 defines a plane (a rigid surface with linear

edges) that has a left-right tilt (slope), a front-back tilt (slope), and an elevation.

In simple regression with a single predictor, by1 was the tilt of a line and b0 was

the elevation of a line that minimized SSResidual, deviations of observed from

predicted values. In multiple regression with two predictors, the regression

coefficients and elevation similarly minimize deviations of observed values

from predicted values, the points on the plane when values for X1 and X2 are

inserted in the equation.
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Intermediate Regression Analysis 4.3

The critical part of the MR coefficient formula is: ry1-ry2r12. In the present example, all three

correlations are positive. A positive value, ry2×r12, will be subtracted from the positive ry1, resulting in a value

for by1.2 that will be less positive and perhaps even negative. The notation by1.2 indicates the slope for X1

when X2 is held constant (i.e., controlled or removed statistically). The ultimate value for by1.2 will depend on

the magnitude and direction of the three correlations. In a study where ry1 and ry2 are positively related to y but

the two predictors are negatively correlated, subtraction of a negative value, ry2×r12, from ry1 will result in by1.2

becoming more positive, even if ry1 was 0 or negative. In this case, the relation of each predictor with the

criterion variable is masked or hidden by their negative correlation with one another. One example would be

if people low in int (reduces recall) studied more (increases recall) than people high in int (increases recall

but is masked by studying less). Simple correlations of recall with int and study time would be weak, but the

relationships become more positive in an MR analysis with both int and study time as predictors. Consider

what happens in MR with other values for ry1, ry2, and r12.

Here are the SPSS commands and output for predicting the dependent variable rec with inc and mem

as predictors. The only difference in the command from the single predictor is the inclusion of both predictors

after /ENTER. The /SAVE option is explained shortly.

REGRESS /DEPENDENT = rec /ENTER int mem /SAVE PRED(prdr.im) RES(resr.im).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .923(b) .853     .804            3.822           R2 = 507.258/594.889 = .853

1-R2 = 87.631/594.889 = .147

�.147 = .384
 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 507.258        2  253.629     17.366 .003(b)

       Residual    87.631        6  14.605 

F = (.9232/2)/{(1-.9232)/(9-2-1)} = 17.26

       Total      594.889        8 SSTotal = (9-1)8.523
2 = 594.85

 Model            Unstandardized             Standardized    t     Sig. 
                  Coefficients               Coefficients               
                  B               Std. Error Beta                       

 1     (Constant) 9.605           12.979                     .740  .487 

       int        -.040           .168       -.053           -.238 .820 

       mem        1.598           .371       .960            4.311 .005 

Residuals Statistics(a)
                 Minimum Maximum Mean  Std. Deviation N 

 Predicted Value 25.11   48.32   38.89 7.963          9 SSReg = (9-1)7.963
2 = 507.27

 Residual        -4.086  4.889   .000  3.310          9 SSRes = (9-1)3.310
2 =  87.64
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Intermediate Regression Analysis 4.4

Box 4-2. Regression Equation.

Figure 4-2. Best fit regression plane.

Box 4-2 shows equations to calculate the best-fit

regression equation along with calculations for the regression

coefficient (slope) for int controlling for rec. Analogous

calculations for mem produce a coefficient of 1.598. Box 4-2

also shows the calculation of the intercept, b0 = 9.615, which

ensures that the prediction plane goes through the intersection

of the three means and minimizes SSResidual. Observed values

for the intercept and regression coefficients are in the

Unstandardized Coefficients column of the regression output. The best-fit regression equation is: y� = 9.605 -

.040 × int + 1.598 × mem. The slopes for int and mem adjust or control for the correlation between predictors,

as shown later. For now, we focus on the overall relationship between rec and the two predictors.

The equation can be used to calculate predicted recall scores

for each participant based on their int and mem scores. The results

are shown in the initial LIST as prdr.im. The equation defines a two

dimensional plane with a tilt on the left-right axis and a separate tilt

on the front-back axis, as shown in Figure 4-2. Although predicted

scores could be plotted for just observed values of int and mem, the

graph would reflect the equation poorly because there are few values

on the predictors and they are confounded. Instead, a wide range of

possible predictor values and their combinations is created and used

to generate the best-fit plane in Figure 4-2 (see Appendix 4-1).

The MR equation, specifically brm.i = 1.598, and the front-back axis in the graph show a positive

relationship between recall and memory strategies controlling for intelligence. But when memory strategies

are controlled, the effect of intelligence disappears and even reverses slightly, bri.m = -.04, as seen in the slight

downward trend in Figure 4-2. This is consistent with the hypothesis that memory strategies mediate the

relationship between intelligence and recall; that is, the inferred model is INT � MEM � REC. Be cautious

about this conclusion, however, because other possible models could account for the results.

The actual predicted (prdr.im) and residual (resr.im) scores generated by SPSS using the /SAVE

option on the REGRESSION command are shown in the initial table of data, and descriptive statistics for

prdr.im and resr.im appear in the Residuals Statistics section of the regression output. The mean of the

residual scores is 0, indicating that deviations above the plane (i.e., positive values for y - y�) balance perfectly
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Intermediate Regression Analysis 4.5

Figure 4-3. Venn Diagram
Representation of MR Equation

deviations below the plane (i.e., negative values for y - y�). The plane goes through the middle of the data

points. Also the mean for the predicted scores is equal to the mean for the recall scores (i.e., y�̄ = ȳ), as was

observed for predicted scores from the single predictor regression equation.

Sum of Squares Regression & Residual

Standard deviations for predicted and residual scores shown to the right of the Residuals Statistics

output are used to calculate SSReg = (n-1)sy�
2 = 507.258 and SSRes = (n-1)s(y-y�)

2 = 87.631, which sum to the total

variability in recall scores, SSTotal = 594.889. These values appear in the ANOVA Summary table. Our best-fit

regression plane partitions SSTotal into SSReg and SSRes. It is the best-fit plane because it goes through the

centre of the scores and SSRes is a minimum. No other values for the coefficients and intercept can produce as

small a sum of squared deviations of observed from predicted values.

MR can be conceptualized in terms of Venn diagrams, as in

Figure 4-3. The circle labelled Y represents the total variability or SSy for

the criterion variable (rec in our example). Circles labelled X1 and X2

represent the predictors, int and mem. Overlap of circles indicates shared

variability. The overlap of predictors with Y divides SSy into four

regions, labelled a, b, c, and d. Area a represents variability in Y that

cannot be predicted by X1, X2, or their combined effect; this is SSRes in

the MR analysis with both predictors. Area b+c+d represents variability

predicted by X1, X2, or both; this is SSReg in the MR analysis. Area b+c

represents what X1 alone can predict, that is, SSReg when only X1 is in

the equation (i.e., ry1
2). Area c+d represents what X2 by itself can predict,

SSReg when X2 is in the equation alone (i.e., ry2
2).

Calculations of b+c+d, SSReg, and a, SSResidual, are shown by the regression output: SSReg = (9-1)7.9632

= 507.27 = b+c+d, and SSRes = (9-1)3.3102 =  87.64 = a. Their sum is SSTotal = SSy = (9-1)8.5232 = 594.85 =

a+b+c+d, the total variability in recall. SSy has been partitioned into what can be predicted by intelligence and

memory strategies and what cannot be predicted by the two predictors; that is, SSTotal = SSReg + SSRes, as was

observed for a single predictor. Additional predictors (e.g., X3, X4, ...) could account for some residual

variability, but the overall equation would still produce just two values, SSReg and SSRes, that would sum to

SSTotal.
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Box 4-3. Strength and Significance
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Figure 4-4. Relationships among
original and derived variables.

Strength and Significance of the Overall Regression

As with a single predictor, SSReg and SSRes can be used to

calculate the proportion of variability in recall that can and cannot be

predicted collectively by int and mem. The relevant calculations

(division by SSTotal) are shown in the Model Summary section of the

SPSS output. The square roots of these proportions produce rs that

represent the variability in recall that can and cannot be predicted by

both predictors (see Box 4-3).

The overall relation between recall and both predictors can be

tested for significance using the F test shown in Box 4-3 and in the ANOVA section of the output. The df for

the numerator SSReg is p = 2, where p = the number of predictors, and the df for the denominator SSRes is n - p

- 1 = 9 - 2 - 1 = 6. Dividing SS by df gives Mean Squares (variances) for the numerator and denominator,

which form an F ratio to test the H0: �
2

r.im = 0. F can also be calculated using R, as shown in Box 4-3 and the

regression output. Here we reject H0. There is no corresponding t test for F when dfNumerator > 1.

As for a single predictor, several features of the overall multiple

regression analysis can be demonstrated by correlating original variables

and new variables created by the regression (see Figure 4-4 and rs below).

Predicted and residual scores correlate 0 because they represent

independent sources of variability; that is, SS that can (b+c+d) and SS

that cannot be predicted (a) are mutually exclusive; they do not overlap.

As well, residual scores correlate 0 with the two predictors used to

generate the predicted scores because any variability in recall related to int

or mem is in predicted recall scores. The correlation between observed and predicted recall scores is equal to

the multiple R calculated earlier and the correlation between observed and residual recall scores represents

variability not predicted by int and mem. Predicted and residual scores account for all the variability in recall,

that is, .9232 + .3842 = 1.0.

VARIABLE LABEL prdr.im '' resr.im ''.

CORR rec int mem prdr.im resr.im /STAT.

rec int mem prdr.im
 int             .630

 mem             .923 .711

 prdr.im         .923 .682 .999 

 resr.im         .384 .000 .000 .000

Analyses to this point have concerned the collective prediction of recall from the combination of int
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Intermediate Regression Analysis 4.7

Box 4.4. Unique
contribution of X1.

and mem scores, although the prediction plane and the regression coefficients suggest recall increased as a

function of mem but not int. To be more specific about the strength and significance of the unique

contribution of each predictor, the first step is to calculate an SS that represents unique contribution (i.e.,

variability in recall predicted only by one predictor and not the other).

Sum of Squares Unique

To determine an SS that represents the unique contribution, consider the Venn

diagrams in Figure 4-3. The area b+c+d represents SSRegression with both predictors,

which can be represented as SSy�.12, the variability in y predicted by a combination of

X1 and X2. Area b+c represents the variability in y that can be predicted by X1 alone,

represented by SSy�.1. Area c+d represents the variability in y that can be predicted by

X2 alone, SSy�.2. The unique contribution of each predictor is overlap with Y that is not shared with the other

predictor: b for X1 and d for X2. As shown in Box 4.4., the unique contribution for X1 can be calculated by

subtraction: b = (b+c+d) - (c+d) = SSy�.12 - SSy�.2 = SSy�1.2, the SS in y that can be predicted by X1 controlling

for X2. SSy�2.1 can be calculated in a similar manner. 

The SSs required to calculate SSy�.12 can be obtained from two REGRESSIONS, one for X2 alone

(SSy�.2) and the other for X1 and X2 (SSy�.12 - SSy�.2). However, SPSS can produce the needed quantities from a

single regression because successive ENTER commands add predictors to those already in the equation.

Calculation of SSy�1.2 requires a regression with just X2 in it and a regression with both X1 and X2 included.

In the present study, calculation of SSr�i.m requires a regression with just mem to obtain SSr�.m and a regression

with both int and mem to obtain SSr�.im. The following commands provide both from a single regression.

Model 1 is the regression with just mem and Model 2 contains both int and mem because /ENTER int adds int

to the predictor(s) already in the equation, in this case mem.

REGRESS/DEP = rec /ENTER mem /ENTER int.

 Model R       R      Adjusted Std.Error

               Square R Square the Estimate 

 1     .923(a) .851   .830    

 2     .923(b) .853   .804     3.822        

 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 506.432        1  506.432     40.076 .000(a)

       Residual   88.457         7  12.637

       Total      594.889        8

 2     Regression 507.258        2  253.629     17.366 .003(b) SSChamge = 507.258 - 506.432

       Residual   87.631         6  14.605                      = 0.826

       Total      594.889        8                             
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Figure 4-5.
Unique X1

 Model            Unstandardized             Standardized    t     Sig. 

                  Coefficients               Coefficients               

                  B               Std. Error Beta                       

 1     (Constant) 6.821           5.202                      1.311 .231 

       mem        1.535           .242       .923            6.331 .000 

 2     (Constant) 9.605           12.979                     .740  .487 

       mem        1.598           .371       .960            4.311 .005 

       int        -.040           .168       -.053           -.238 .820 

Calculation of SSr�i.m is obtained from SSReg for Model 2 (b+c+d) minus SSReg for Model 1 (c+d) =

SSr�.im - SSr�.m= 507.258 - 506.432 = 0.826. This quantity is the change in SSReg from Model 1 to Model 2.

Consistent with earlier impressions, int uniquely predicts very little of recall once its correlation with mem is

eliminated (i.e., subtracted, controlled, kept constant).

A related way to conceptualize this process is to consider what would happen if

the overlap between X1 and X2 was removed, ignoring for the moment Y. Eliminating

the overlap would remove areas c and d in the Venn diagrams and leave only area b, the

unique contribution of X1. The correlation between Y and the variability in X1 that is

unique (i.e., independent of X2) represents the unique contribution of X1 (see Figure 4-

5). This approach will be examined more fully later, after considering the significance

and strength of the unique contribution of each predictor.

One final observation. Observe that the final output for Model 2 (i.e., after int was

added to mem so both predictors are in the equation) is identical to the output with both

predictors entered at the same time. The final equation and associated statistics do not differ when predictors

are entered separately or in a different order. That is, REGRESS /DEP = rec /ENTER int /ENTER mem will

produce the same final equation (i.e., Model 2) as observed here.
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Intermediate Regression Analysis 4.9

Figure 4-6. Plot of Best-Fit Plane.

Figure 4-6. Plot of Artificial Predictors Generated by
INPUT PROGRAM.

APPENDIX 4-1

To plot the best-fit plane with two predictors

(intelligence and memory strategies in this example), first create

a wider range of values for the two predictors and then generate

the plane. Given the equation, the following commands and

some chart-editing produced the best-fit plane (i.e., predicted

values) shown in Figure 4-2 and reproduced in Figure 4-6. The

range of values for i and m were chosen from Figure 4-1, a plot

of the actual data, and r is the predicted recall score computed

from the best-fit equation obtained from the MR analysis.

INPUT PROGRAM.

LOOP i = 90 TO 120 BY 10.

LEAVE i.

LOOP m = 12 TO 27 BY 3.

END CASE.

END LOOP.

END LOOP.

END FILE.

END INPUT PROGRAM.

COMPUTE r = 9.605 -.04*i + 1.598*m.

GRAPH  /SCATTERPLOT(XYZ) = m WITH r WITH I.

To better appreciate what the program

does, Figure 4-6 plots the relationship between the

artificial values generated for i (intelligence) and

m (memory strategies). Whereas the original

observed values for int and mem were highly

correlated, the artificial values i and m do not

correlate and cover the full range of possible

values. This generates predicted values that better

illustrate the best-fit plane.
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Intermediate Regression Analysis 5.1

Box 5-1. Part r Formula

CHAPTER 5 - STRENGTH & SIGNIFICANCE OF UNIQUE CONTRIBUTION

Chapter 4 showed that intelligence (int) and memory strategies (mem) together accounted for a

significant and substantial amount of variability in recall scores (rec). As well, an SSUnique or SSChange for each

predictor was calculated by subtraction: SSr�i.m and SSr�m.i. In general, SSy�1.2 = SSy�.12 - SSy�.2. This chapter uses

SSUnique to calculate a measure of the strength of the unique contribution of each predictor and an F test of the

significance of the unique contribution of each predictor controlling for other predictors in the equation. An

equivalent t-test for the regression coefficient is also presented.

Part Correlation and the Strength of the Unique Contribution

As shown previously, a common way to measure the strength of a

predictor is a correlation coefficient squared, r2, which indicates the proportion

of variability explained by the predictor. Calculation of r2 involves dividing

SSPredicted by SSy, the total variability in the predictor. For the unique contribution

of predictor X1 in MR, the strength is the SSChange calculated earlier divided by

SSy, that is, SSy�1.2 / SSy (see Box 5-1). This is called a part correlation, represented as ry(1.2). The rationale for

the parentheses in the notation is explained later. The following regression provides the SSs required to

calculate SSr�i.m. As well, some new commands produce the additional statistics. These printouts contain more

precise values that were obtained from SPSS for several quantities because the default values were too coarse

given the tiny unique contribution of int. Some results may not be perfectly equal.

REGRESS /STAT = DEFAULT CHANGE ZPP /DEP = rec /ENTER mem /ENTER int.

 Model R       R        Adjusted Std. Error of Change Statistics                              
               Square   R Square the Estimate  R Square Change    F Change df1 df2 Sig. F Change 

 1     .923(a) .851306   .830     3.555         .851               40.076   1   7   .000          

 2     .923(b) .852693   .804     3.822         .001388            .057     1   6   .820          
 r2

r(i.m) = .825424/594.889

     = .001388 = Rr.im
2-Rr.m

2�.852693-.851306

 Model            Sum of Squares   df Mean Square F      Sig.    

 1     Regression 506.432322        1  506.432     40.076 .000(a) 

       Residual   88.457            7  12.637                     
       Total      594.889           8                             

 2     Regression 507.257746        2  253.629     17.366 .003(b) SSr�i.m = 507.257746 - 506.432322

       Residual   87.631            6  14.605                            = .825424

       Total      594.889           8

 Model            Unstandardized             Standardized    t     Sig. Correlations             
                  Coefficients               Coefficients                                        
                  B               Std. Error Beta                       Zero-order Partial Part  
 1     (Constant) 6.821           5.202                      1.311 .231                          
       mem        1.535           .242       .923            6.331 .000 .923       .923    .923  

 2     (Constant) 9.605           12.979                     .740  .487                          
       mem        1.598           .371       .960            4.311 .005 .923       .869    .675  

       int        -.040           .168       -.053           -.238 .820 .630       -.097   -.037 
rr(i.m) =�.001387
      =-.03725

As before, mem is entered into the equation first and int is added second. This gives the unique

���������	�
���
�����
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Box 5-2. Alternative
calculation for part r.

contribution of int. The first step is to calculate SSr�i.m for int added to mem. This quantity can be referred to

simply as SSChange, although that label is vague about which predictor it is for. The part r2 is SSChange divided

by SSTotal = .825424/597.889 = .001387 for int controlling for mem.

The CHANGE option on the REGRESSION command produces R Square Change in the Change

Statistics section of the output. For Model 2, R2
Change = .001388, the part r2 for int, which was added to the

equation at step 2. As shown above, R2
Change can also be calculated as the increase in R2 from Model 1 to

Model 2; that is, R2
r(i.m) = R2

r.im - R2
r,m.

The part r, rr(i.m) = �.001387 = -.037, appears on the regression line for int. The additional output for

each predictor was produced by the ZPP option in the REGRESSION command. ZPP refers to zero, partial,

and part correlation. Zero is the simple correlation between the dependent variable and a predictor, that is, rr.i

for int and rr.m for mem. The part r is negative because of the negative coefficient for int. 

Box 5-2 shows the relationship between part r2 and the difference in

R2; specifically, r2
y(1.2) = R2

y.12 - R
2

y.2. These calculations for the part r2 for int are

shown in the preceding regression below the change statistics.

It is telling to contrast the part r for int, -.037, with the simple r of

.630 (see the Zero-order column generated by the ZPP option). A large positive

correlation of .630 has become tiny and even slightly negative, rr’i.m = -.037

once the correlation between int and mem is controlled. The original simple

correlation was positive and large because people high on int tended to be high

on mem, and mem was related to the criterion variable rec. Controlling for mem

(i.e., removing c in the Venn diagram) eliminates the relation between int and rec. The analysis below can be

used to calculate the part correlation for mem, rr(m.i) = .675, which is less than rrm = .923, but still substantial.

REGRESS /STAT = DEFAU CHANGE ZPP /DEP = rec /ENTER int /ENTER mem.

Model R       R      Adjusted Std. Error of Change Statistics

              Square R Square the Estimate  R Square Change F Change df1 df2 Sig. F Change

1     .630(a) .397   .310     7.162         .397            4.599    1   7   .069

2     .923(b) .853   .804     3.822         .456            18.581   1   6   .005

 Model            Sum of Squares df Mean Square F      Sig. 
 1     Regression 235.878        1  235.878     4.599  .069(a)
       Residual   359.011        7  51.287
       Total      594.889        8    

 2     Regression 507.258        2  253.629     17.366 .003(b)
       Residual   87.631         6  14.605
       Total      594.889        8
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Box 5-3

 Model            Unstandardized             Standardized    t     Sig. Correlations             
                  Coefficients               Coefficients                                        
                  B               Std. Error Beta                       Zero-order Partial Part  
 1     (Constant) -9.772          22.815                     -.428 .681                          
       int        .474            .221       .630            2.145 .069 .630       .630    .630  

 2     (Constant) 9.605           12.979                     .740  .487                          
       int        -.040           .168       -.053           -.238 .820 .630       -.097   -.037 
       mem        1.598           .371       .960            4.311 .005 .923       .869    .675  

The contribution of mem remains moderately strong even with int in the equation, r2
r(m.i) = .456 and

rr(m.i) = .675. However, the strength of mem is considerably reduced when int is controlled statistically (i.e.,

.675 is weaker than .923, the simple correlation between rec and mem). The reduction is even more notable in

terms of r2: .6752 = .456 versus .9232 = .852. The decrease occurs because some, but not all, of what mem

predicts when alone was due to variability in mem shared with int (i.e., area c). In theory, this could be

viewed as consistent with the mediation hypothesis: INT � MEM � REC. Although less plausible, however,

the results are also consistent with MEM � INT � REC and other underlying models. In any case, some

variation in mem remains related to recall when int is controlled.

Note that the unique contributions of the two predictors does not add up to the total variability

accounted for when both predictors are in the equation; that is, r2
r(i.m) + r2

r(m.i) = -.0372 + .6752 = .457 < .853 =

R2
r.im. This inequality could also be demonstrated in terms of SSs. The other 40% or so of variability in rec

that is predictable from int and mem is due to variability shared by the two predictors (i.e., area c in the Venn

diagrams) and cannot be allocated to a specific predictor.

Significance of SSChange

Although the part r reflects the strength of the unique

contribution of a predictor, it does not tell us about its

significance; that is, whether it could have occurred by chance.

There are two equivalent tests of significance for the unique

contribution of a single predictor, an F test and a t-test. The F tests

the significance of the increase in SSReg when a predictor is added

to other predictors in the equation (see Box 5.3). Model 1 of the regression output shows that mem by itself

accounts for SSReg = 506.432 units of variability. When int was added second, SSReg became 507.258, an

increase of just .826 units of variability (i.e, 507.258 - 506.432 = .826). This SSChange has df = 1 because just

one predictor was added to the equation, which gives MSChange = .826/1 = .826. Dividing MSChange by MSRes

from the regression analysis with both predictors tests the significance of the unique contribution of int.

For the unique contribution of int, F = 0.826/ 14.605 = .057. The denominator is MSRes for both

predictors because the test is for the unique contribution of int with mem controlled (i.e., with mem also in the
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Figure 5-1. Venn Diagram
Representation of Multiple Regression

equation). The F value appears in the Change Statistics section of the MR analysis and is not significant

given its p value of .820. Here are relevant sections of the earlier regression. The probability of an F of .057

or larger if the H0 is true is .820; that is, p(F �.057 IF H_0 true) = .820, clearly greater than .05. The H0 is not

rejected. 

REGRESS /STAT = DEFAU CHANGE ZPP /DEP = rec /ENTER mem /ENTER int.

 Model R       R        Adjusted Std. Error of Change Statistics                              
               Square   R Square the Estimate  R Square Change    F Change df1 df2 Sig. F Change 
 1     .923(a) .851306   .830     3.555         .851               40.076   1   7   .000          

 2     .923(b) .852693   .804     3.822         .001388            .057     1   6   .820          

 Model            Sum of Squares   df Mean Square F      Sig.    

...

 2     Regression 507.257746        2  253.629     17.366 .003(b)

       Residual   87.631            6  14.605

       Total      594.889           8                             

 Model            Unstandardized             Standardized    t     Sig. Correlations             
                  Coefficients               Coefficients                                        
                  B               Std. Error Beta                       Zero-order Partial Part  
...
 2     (Constant) 9.605           12.979                     .740  .487                          
       mem        1.598           .371       .960            4.311 .005 .923        .869    .675  
       int        -.040           .168       -.053           -.238 .820 .630       -.097   -.037 

There are several ways to conceptualize the F test and the equivalent t-test presented in the next

section. Specifically, what do the tests measure and what happened to reduce int from marginal significance

alone to nonsignificance when mem is controlled? We noted earlier that the simple correlation between rec

and int was confounded because int was correlated with mem. MR shows that controlling for or eliminating

the confounding has reduced the contribution of int. In terms of the

graphs of the data and the best-fit plane, rather than comparing front-

left observations (i.e., low on int and mem) with back-right

observations (i.e., high on int and mem), the MR determines what the

change in rec would be if int varied independently of mem. The graph

of the plane in Chapter 4 (Figure 4-1) showed that the slope for int is

virtually flat (i.e., close to 0).

A second way to conceptualize the F and t for the unique

contribution is in terms of the Venn diagram shown previously and

repeated in Figure 5-1. The circle labelled Y represents the variability

in the criterion variable (rec in our example). The circles labelled X1

and X2 represent our predictors, int and mem. Area b represents the

unique contribution of X1 (int), that part of Y that overlaps with X1
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Box 5-4. T-test for regression
coefficient.

but is independent of X2. In essence, the significance for each predictor in a multiple regression equation

represents the significance of the increase in SSReg when that predictor is added to predictors already in the

regression analysis. If a third predictor X3 was added and overlapped with an area of Y that did not overlap

with X1 and X2, the additional variability accounted for would be unique to X3 and could be used to

calculate a part r and to test the significance of the unique contribution of X3. And so on, with multiple

predictors. The generalized version for p predictors is: SSy�1.23...p = SSy�.123...p - SSy�.23...p as discussed in chapter 7.

Significance of Regression Coefficients

Because F involves df = 1 for the numerator, there is an equivalent t. For int, the t-test can be

considered a test of significance of the part r, rr(i.m), or of the regression coefficient, bri.m. Both are equivalent

and we will just do the significance of the regression coefficient since that is how SPSS reports it.

Specifically, the t-test determines whether the regression coefficient for each predictor differs significantly

from 0 when other predictors are in the equation. The regression coefficient in the population is represented

by the Greek letter beta; that is, �y1.2 is the population coefficient for X1 controlling for X2. A regression

coefficient that equals 0 uniquely explains none of the variability in the dependent variable when the other

predictor is controlled.

Box 5-4 shows the relevant formula. First, calculate a

Standard Error for the observed regression coefficient to reflect how

much variability is expected from sample to sample if the null

hypothesis is true. Note that the denominator for SE is variability in

X1 that is independent of X2. SEby1.2 can be used to compute a t to

test the significance of the regression coefficient. The calculations

appear after the following regression output. Earlier calculations

using F to test significance are included for comparison.

REGRESS /STAT = DEFAU CHANGE /DEP = rec /ENTER mem /ENTER int.

 Model R       R      Adjusted Std. Error of Change Statistics

               Square R Square the Estimate  R Square Change F Change df1 df2 Sig. F Change

 1     .923(a) .851   .830     3.555         .851            40.076     1   7   .000

 2     .923(b) .853   .804     3.822         .001              .057     1   6   .820

Fchange = 0.826/14.605 = .057

 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 506.432        1  506.432     40.076 .000(a) 

       Residual   88.457         7  12.637                     

       Total      594.889        8                             

 2     Regression 507.258        2  253.629     17.366 .003(b) SSChamge = 507.258 - 506.432

       Residual   87.631         6  14.605 = 0.826

       Total      594.889        8                             
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Intermediate Regression Analysis 5.6

 Model            Unstandardized             Standardized    t     Sig. 

                  Coefficients               Coefficients               

                  B               Std. Error Beta                       

 1     (Constant) 6.821           5.202                      1.311 .231 

       mem        1.535           .242       .923            6.331 .000 

 2     (Constant) 9.605           12.979                     .740  .487 

       mem        1.598           .371       .960            4.311 .005 

       int        -.040           .168       -.053           -.238 .820 

SEbi = SQRT{MSE/((1-rim
2)*SSi)} = SQRT{14.605/((1-.711

2)*1050)} = .168

tint = -.04/.168 = -.238 df = n - p - 1 = 6 DNR H0: �ri.m = 0

As expected, the observed p value for t, .820, equals the p for F. Also, F = t2 = -.2382 = .057. F and

t tests are equivalent because the F test numerator has df = 1. It tests the significance of one additional

predictor in the equation. With a p value of .820, the slope is clearly not significant, even though the simple

relationship between recall and intelligence was close to significance, p = .069.

The preceding SPSS analysis produced change statistics for the unique contribution of int because

mem was entered first and then int added. A regression with int entered first and mem second was presented

earlier. Use that analysis to determine and explain the unique contribution of mem. Perform calculations to

test the significance of the unique contribution of mem and relate the results to the printout. Observe that the

t-tests for the regression coefficients are the same in both analyses irrespective of the order predictors are

entered. It is not necessary to obtain the Change statistics to determine the significance or the strength of the

unique contribution for each predictor, although that is a useful way to conceptualize the test.

One important observation about SSChange is that the increase in SSReg is the same as the decrease in

SSRes. This must be true given SSTotal is identical in both regressions. In terms of Figure 5.1, the unique

contribution of a predictor is variability in the dependent variable that was error with only the other predictor

in the equation. Below is the relevant section of the previous analysis with mem alone in model 1 and int

added in model 2. SSChange obtained by subtracting SSRes (model 1 minus model 2) is the same as that obtained

by subtracting SSReg (model 2 minus model 1). That is, SSChange = 507.258 - 506.432 = 88.457 - 87.631 = .826.

This alternative way to view SSChange will help understand a second measure of the strength of the unique

contribution of a predictor, as covered in Chapter 6.

 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 506.432        1  506.432     40.076 .000(a) 

       Residual   88.457         7  12.637                     

       Total      594.889        8                             

 2     Regression 507.258        2  253.629     17.366 .003(b)

       Residual   87.631         6  14.605

       Total      594.889        8

Sampling Distributions for Significance Tests

The following distributions are based on 100,000 samples of X1, X2, and Y for 24 participants. In
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Intermediate Regression Analysis 5.7

Figure 5-2. Multiple R.

Figure 5-3. Distribution of Fs for 100,000 Samples.

Figure 5-4. Distribution of Regression
Coefficient.

the population, all correlations are 0. That is, �y1 = 0, �y2 = 0, and �12 = 0. In a Venn diagram, there would be

three, non-overlapping circles representing X1, X2, and Y.

Figure 5-2 shows the distribution of the 100,000

multiple correlation coefficients, Ry.12. In the population,

�y.12 = 0, but because a multiple R cannot be negative,

only positive values are produced.

The statistical question is how large Ry.12 must

be to reject H0: �y.12 = 0. To answer that question, F(2, 21)

is calculated for each sample. The 100,000 Fs appear in

Figure 5-3. Although not shown, pObserved was also

calculated for each F. If H0 is true, as it is here, 5% of those ps should be less than or equal to .05.

The dashed vertical line in Figure 5-3 is FCritical

= 3.47 for df = p, n-p-1 = 2, 21. There are two equivalent

ways to determine how many samples produced a

significant FObserved. We can count the number of ps less

than .05 or the number of Fs greater than 3.47. The

following commands do this, then count the number of

significant values for each. As expected, they agree and

are close to the expected proportion of .05.

COMPUTE sigf = f GE 3.4668.

COMPUTE sigp = p LE .05.

FREQ sigp sigf.

Sigf Frequency Percent
0 95091 95.1
1 4909 4.9

Sigp Frequency Percent
0 95091 95.1
1 4909 4.9

F tests the significance of the relationship between Y

and both X1 and X2. It does not measure the significance of

the unique contribution of X1 or X2. A t-test for the

significance of each regression coefficient provides that

information. Here the null hypothesis is H0: �Y1.2 = 0 or

equivalently �Y(1.2) = 0.

Figure 5-4 shows the distribution of the regression

coefficient for X1 controlling for X2. It can take on positive or
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Figure 5-5. T for Regression
Coefficient.

negative values and has an expected value of 0 in the present case. A distribution for rY(1.2) would also have

an expected value of 0. However, by chance by1.2 can deviate from 0, sometimes by a substantial amount. To

determine whether it deviates enough to reject Ho: �Y1.2 = 0, a t-test is calculated or an F test for SSChange.

Figure 5-5 shows the distribution of ts for the 100,000

samples and the critical values for a non-directional test. A p value

was also calculated for each tObserved and the number of samples with

significant results calculate from t and p. Again, the results confirm

those expected when there is no relationship among the three

variables.

COMPUTE sigp = py1 LE .05.

COMPUTE sigt = ty1 LE -2.0796 OR ty1 GE 2.0796.

FREQ sigp sigt.

Sigp Frequency Percent
.000 94966 95.0
1.000 5034 5.0

Sigt Frequency Percent
.000 94966 95.0
1.000 5034 5.0

Given this introduction to multiple regression with two predictors, let’s examine mediation analysis,

one common application of multiple regression as mentioned at the start of chapter 4. The goal of mediation

analyses is to determine whether the relationship between a predictor X and a dependent variable Y is due to

a mediator variable. The hypothesized underlying model is X � M � Y. If this model is correct, the

statistical relationship between X and Y (i.e., significance, strength) should weaken and perhaps even

disappear when Y is regressed on both X and M. Appendix 5-2 describes the process more fully and

demonstrates, most importantly, that mediation analyses can be consistent with other underlying models and

must be considered thoughtfully
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APPENDIX 5-1: PRACTICE SAMPLES

Below, i1, i2, ..., i9 represent the 9 intelligence scores; m1, m2, ..., m9 represent the 9 memory strategy

scores; and r1, r2, ..., r9 represent the 9 recall scores. Descriptive statistics, simple rs, and MR results are

shown for each sample in the next two listings. Note the correspondence between the results for Sample 10

below and analyses discussed in previous pages.

SAMPLE  i1 m1 r1  i2 m2 r2  i3 m3 r3  i4 m4 r4  i5 m5 r5  i6 m6 r6  i7 m7 r7  i8 m8 r8  i9 m9 r9

     1  96 22 55 109 25 42  90 21 27 123 25 46 109 23 48  94 12 29  94 22 39 116 26 37  83 14 37

     2  99 23 42  74 11 35 111 24 44  85 23 42 108 21 39 105 18 31  96 19 45  98 21 52  93 23 37

     3  77 14 41  80 17 41  98 22 39  95 18 51  96 24 42  98 20 43  97 19 33 112 18 37 118 23 57

     4 117 30 53 104 19 33 115 21 38  76 17 44  83 21 36  84 17 37  74 15 30  93 19 45  91 21 38

     5 105 21 43 103 17 38 114 24 45  93 18 32  79 17 34  95 21 43  94 18 37  83  8 31 110 25 43

     6  85 17 41 114 20 40 118 23 42  81 18 42  87 17 41  79 17 36  87 14 39  88 13 37  96 22 44

     7  90 20 31  89 26 42 108 24 45 105 23 46  75 17 41 104 17 38 106 22 42  74 17 46  96 16 33

     8  76 17 35  85 16 40 115 25 39  75 16 40 133 30 57 119 27 45  98 22 53  78 15 33  96 12 37

     9 103 23 36  87 19 35  80 23 42 106 22 44 111 23 38 100 22 42  98 20 46 117 29 54 103 19 43

    10  96 25 47 111 27 51 118 23 41 112 21 37  88 14 25  92 12 30 112 25 41  89 18 32 106 23 46

SAMPLE   MNi      SDi      MNm     SDm      MNy     SDy    Rri    Rrm    Rim     Byi      Bym       B0

  1 101.5556  13.2393  21.1111  4.9103  40.0000  8.9303  .3944  .4760  .7450   .0602    .7449  18.1621

  2  96.5556  11.5878  20.3333  4.0311  40.7778  6.1599  .1578  .4312  .5869  -.0773    .7894  32.1898

  3  96.7778  13.0459  19.4444  3.1667  42.6667  7.2457  .3416  .2851  .6199   .1487    .2725  22.9745

  4  93.0000  15.8745  20.0000  4.3012  39.3333  6.9642  .4342  .7136  .7543  -.1059   1.4502  20.1775

  5  97.3333  11.7580  18.7778  4.9944  38.4444  5.2941  .8226  .8410  .7677   .1941    .5406   9.3992

  6  92.7778  14.0337  17.8889  3.3333  40.2222  2.5386  .3559  .6976  .6835  -.0410    .6493  32.4129

  7  94.1111  13.0714  20.2222  3.6667  40.4444  5.4569  .0220  .4130  .4219  -.0773    .7310  32.9399

  8  97.2222  21.0225  20.0000  6.2048  42.1111  8.1155  .6988  .7447  .8701   .0808    .7359  19.5401

  9 100.5556  11.3700  22.2222  3.0322  42.2222  5.7615  .4558  .5978  .5289   .0982    .9411  11.4310

 10 102.6667  11.4564  20.8889  5.1828  38.8889  8.6233  .6297  .9227  .7109  -.0399   1.5978   9.6053

SAMPLE    SSREG    SSRES       R2        F      SIG       Ti     SIGi       Tm     SIGm

     1 146.8463 491.1537    .2302    .8969    .4562    .1662    .8735    .7628    .4745

     2  60.6585 242.8971    .1998    .7492    .5123   -.3223    .7581   1.1453    .2957

     3  52.6822 367.3178    .1254    .4303    .6689    .5503    .6020    .2448    .8148

     4 207.3191 180.6809    .5343   3.4423    .1010   -.5689    .5901   2.1108    .0793

     5 175.6881  48.5341    .7835  10.8597    .0101   1.4545    .1960   1.7206    .1361

     6  26.4994  25.0562    .5140   3.1728    .1148   -.5816    .5820   2.1867    .0714

     7  47.3552 190.8670    .1988    .7443    .5143   -.4596    .6620   1.2186    .2687

     8 297.8104 229.0785    .5652   3.9001    .0822    .3831    .7149   1.0301    .3427

     9 102.1020 163.4536    .3845   1.8740    .2332    .5136    .6259   1.3124    .2373

    10 507.2577  87.6311    .8527  17.3657    .0032   -.2377    .8200   4.3106    .0050

Here are SPSS commands to enter the data for sample 10.

DATA LIST FREE / int mem rec.
BEGIN DATA

 96 25 47  111 27 51  118 23 41  112 21 37   88 14 25

 92 12 30  112 25 41   89 18 32  106 23 46
END DATA.
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Figure 13. Mediation Model.

APPENDIX 5-2: CAUTIONS ABOUT MEDIATION ANALYSIS

Mediation analysis determines whether the relationship

between a predictor X and a criterion Y is due to a mediator

M. The general model is shown in Figure 1, along with

standardized regression coefficients from four regression

analyses: X�Y, X&M�Y, X�M, M�Y. The hypothesis

that M is a mediator of X�Y can be tested in two equivalent ways. One way to determine

whether the path from X to M to Y is significant is to test whether the product of �YM times

�MX differs from 0. The second is to determine whether �YX.M is less than �YX. The second

approach is used below although we do not actually test the significance. The appropriate

test is one that we have not learned.

The following demonstrations show that a reduction in the relationship between X and

Y is ambiguous because alternative models to X � M � Y produce the same statistical

result. The simulated data are generated using the models shown before the SPSS commands

and also in the bolded lines of the syntax. Remaining lines stay the same. The four models all

produce a decrease in the relationship between X and Y when M enters the regression. In the

results, note the decrease in significance for X from Model 1 to Model 2 and the part r for X

being much less than the simple r for X, as bolded in the ZPP section of Model 2.

Model 1: X � M � Y

SET SEED = 7654321.
INPUT PROGRAM.
LOOP o = 1 TO 1000.

COMPUTE x = RV.NORM(0,1).

COMPUTE m = x*.7071 + RV.NORM(0,1)*.7071.

COMPUTE y = m*.7071 + RV.NORM(0,1)*.7071.

END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

REGRESS /STAT = DEFAU ZPP /DEP = y /ENTER x /ENTER m.
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Model
Unstandardized Coefficients

t Sig.
Correlations

B Std. Error Zero-order Partial Part
1 (Constant) -0.006 0.027 -.233 .816

x .504 0.027 18.737 .000 .510 .510 0.51
2 (Constant) .004 0.022 .185 .854

x .010 0.032 .324 .746 .510 .010 0.007

m .691 0.032 21.757 .000 .706 .567 0.488

Model 2: Y � M � X
...

COMPUTE y = RV.NORM(0,1).

COMPUTE m = y*.7071 + RV.NORM(0,1)*.7071.

COMPUTE x = m*.7071 + RV.NORM(0,1)*.7071.

...

Model
Unstandardized Coefficients

t Sig.
Correlations

B Std. Error Zero-order Partial Part
1 (Constant) .012 .027 .430 .667

x .516 .028 18.737 .000 .510 .510 .510
2 (Constant) .016 .022 .736 .462

x .010 .032 .324 .746 0.51 0.01 .007

m .709 .031 22.673 .000 .715 0.583 .502

Model 3: M � X & Y
...

COMPUTE m = RV.NORM(0,1).

COMPUTE x = m*.7071 + RV.NORM(0,1)*.7071.

COMPUTE y = m*.7071 + RV.NORM(0,1)*.7071.

...

Model

Unstandardized Coefficients

t Sig.

Correlations

B Std. Error Zero-order Partial Part
1 (Constant) 0.016 .027 .580 .562

x 0.498 .027 18.240 .000 .500 .500 0.5
2 (Constant) 0.004 .022 .185 .854

x -0.016 .032 -.509 .611 0.5 -0.016 -0.011

m 0.717 0.032 22.608 0 0.71 0.582 0.504

Model 4: z � X&M, M � Y
...

COMPUTE z = rv.norm(0,1).

COMPUTE x = RV.NORM(0,1)*.7071 + z*.7071.

COMPUTE m = RV.NORM(0,1)*.7071 + z*.7071.

COMPUTE y = RV.NORM(0,1)*.7071 + m*.7071.

...

Model
Unstandardized Coefficients

t Sig.
Correlations

B Std. Error Zero-order Partial Part
1 (Constant) -.070 .145 -.486 0.629

x 0.515 .153 3.369 0.002 0.445 0.445 0.445
2 (Constant) -.001 .100 -.010 .992

x .093 .120 0.771 0.444 0.445 0.114 0.07

m .707 .098 7.244 .000 .790 .734 0.657
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Intermediate Regression Analysis 6.1

CHAPTER 6 - MORE ON UNIQUE CONTRIBUTION

Chapter 6 examines three topics related to the strength of the unique contribution of

predictors: an alternative conceptualization of part rs, standardized regression coefficients,

and the partial r, a less common and more ambiguous alternative to the part r.

Unique Contribution and Residual Predictors

Part r is equal to SSChange for a predictor divided by the total variability in the criterion

variable y. A closely related way to conceptualize part rs is in terms of a residual predictor;

that is, a predictor with variability shared with other predictors removed. This approach

generalizes to MR with more than two predictors better than Venn diagrams.

Recall that a residual dependent variable is uncorrelated with the predictor(s) used to

generate predicted and residual scores; that is, r(y-y�)x = 0. Given this fact, the variability in one

predictor that is independent of other predictors in the equation can be determined by

regressing one predictor on the other predictors. For two predictors, if X2 is used to predict

X1 the X1 residuals will be completely independent of X2. Below is the standard regression

analysis for recall (rec) as a function of intelligence (int) and memory strategies (mem). 

Previous calculations for the part r for int are shown to compare with the following analyses.

REGRESS /STAT = DEFAU CHANGE ZPP /DEP = rec /ENTER mem /ENTER int.

 Model R       R        Adjusted Std. Error of Change Statistics                              

               Square   R Square the Estimate  R Square Change    F Change df1 df2 Sig. F Change 

 1     .923(a) .851306   .830     3.555         .851               40.076   1   7   .000          

 2     .923(b) .852693   .804     3.822         .001388            .057     1   6   .820          

 r2r(i.m) = .825424/594.889

     = .001388 = Rr.im
2-Rr.m

2�.852693-.851306

 Model            Sum of Squares   df Mean Square F      Sig.

 1     Regression 506.432322        1  506.432     40.076 .000(a)

       Residual   88.457            7  12.637

       Total      594.889           8

 2     Regression 507.257746        2  253.629     17.366 .003(b) SSr�i.m = 507.257746 - 506.432322

       Residual   87.631            6  14.605                          = .825424

       Total      594.889           8

 Model            Unstandardized             Standardized    t     Sig. Correlations

                  Coefficients               Coefficients

                  B               Std. Error Beta                       Zero-order Partial Part

 1     (Constant) 6.821           5.202                      1.311 .231

       mem        1.535           .242       .923            6.331 .000 .923       .923    .923

 2     (Constant) 9.605           12.979                     .740  .487

       mem        1.598           .371       .960            4.311 .005 .923       .869    .675

       int        -.040           .168       -.053           -.238 .820 .630       -.097   -.037 

ry(i.m) =�.001387 =-.03725
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Figure 6-2. 

The Venn diagrams in Figures 6-1 and 6-2 show one way to

visualize how residual scores capture the unique contribution of

predictors. The diagram expands on previous versions. As before,

area a is the residual variability and area b+c+d is the explained

variability with both predictors. Area b+c is what X1 by itself

predicts and c+d is what X2 by itself predicts. By subtraction, we

obtained b, the unique contribution of X1, and d, the unique

contribution of X2. Figure 6-1 labels some additional areas, e, f, and g. Note in particular

that c+f represents the overlap between the two predictors. Ignore Y for now and focus on

X1 and X2.

To get the variability in X1 that is

independent of X2 (i.e., unique to X1), c+f must be

subtracted from the total variability in X1. Using X1

as the dependent variable and X2 as predictor, SSRes

for X1 (i.e., res1.2) equals the variability in X1 that

does not overlap with X2 (i.e., is uncorrelated with

X2). This corresponds to area b+e in Figure 6-1.

Therefore, the overlap between Y and the residual

X1 predictor now corresponds to b, namely SSy�1.2,

and the part r for X1, ry(1.2). Figure 6-2 illustrates these operations. In the top-left Venn

diagram, the overlap between X1 and Y contains both b and c, the unique and shared

variability, respectively. The lower-right Venn diagram shows that by removing the overlap

between X1 and X2 (i.e., c+f), the residual X1 variable and Y share only area b, the unique

contribution of X1. The same strategy could be used to obtain d in Figure 6-1, SSy�2.1, and

ry(2.1), the unique contribution of X2. See the analyses in Appendix 6-2.

This way to conceptualize the unique contribution of any predictor generalizes to

multiple predictors, whereas the Venn diagram approach becomes overly complex. In terms
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Figure 6-3. Part & Partial r as
Residual Predictors

of residual predictors, removing overlap with all other predictors leaves only the portion of

variability in X1 that is unique and independent of the other predictors. The relationship

between this residual predictor is what X1 can predict in Y beyond what all other predictors

can account for, producing SSy�1.23...p, and ry(1.23...p), the relationship between y and X1

controlling for X2, X3, ..., Xp, where p is the number of predictors.

Calculating the part r from a residual predictor for int

involves several steps summarized in Figure 6-3. Regress int on

mem (i.e., int is the dependent variable and mem the predictor)

and save residual scores from this regression, i- i� in the Figure

and resi.m in the following regression. This residual predictor

is unique in that it correlates 0 with mem. Finally, correlating

resi.m with rec or regressing rec on resi.m, produces the same

results as earlier calculations for rr(i.m), the part r for int. 

The following regression shows the relevant analyses. Note that mem accounts for

50.5% of the variability in int. This shared variability is removed to obtain variability unique

to int and ultimately the unique contribution of int to the prediction of rec. Note that SSRes =

SS1(1-r2
12), the quantity in the denominator of SE for the t-test reported earlier.

REGRESS /DEP = int /ENTER mem /SAVE RESI(resi.m).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .711(a) .505     .435            8.614           1-R2 = .495

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 530.594        1  530.594     7.151 .032(a) 

       Residual   519.406        7  74.201                    

       Total      1050.000       8                            

 Model            Unstandardized             Standardized    t     Sig. 
                  Coefficients               Coefficients
                  B               Std. Error Beta
 1     (Constant) 69.843          12.606                     5.540 .001
       mem        1.571           .588       .711            2.674 .032

Residuals Statistics(a)
                 Minimum Maximum Mean   Std. Deviation N 
 Predicted Value 88.70   112.27  102.67 8.144          9 

 Residual        -13.127 12.016  .000   8.058          9 unique variation in int
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Intermediate Regression Analysis 6.4

Correlating resi.m with mem shows that the new predictor, resi.m, is independent of

the other predictor, mem. When resi.m is correlated with rec, the part r of -.037 is obtained.

This part r shows that resi.m, the variability in int independent of mem, accounts uniquely for

-.0372 = .0014 (.14%) of the total variability in y. These correlations appear in the following

analysis.

VARIABLE LABEL resi.m ''.

CORR rec mem resi.m.

                        rec   mem   resi.m 
 mem    Pearson         .923  1     .000   

 resi.m Pearson         -.037 .000  1      

Regressing rec on resi.m also shows that this approach is equivalent to previous

calculations for the part r. SSReg equals SSChange from earlier work and R2, the simple r, and the

part r all equal earlier calculations of part r. Relevant to the distinction between part and

partial rs (discussed later), note that the denominator for SSChange is the total variability in rec,

that is, SSRecall.

REGRESS /STAT = DEFA ZPP /DEP = rec /ENTER resi.m.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .037(a) .001     -.141           9.212           

 Model            Sum of Squares df Mean Square F    Sig.    

 1     Regression .825           1  .825        .010 .924(a) 

       Residual   594.063        7  84.866                   

       Total      594.889        8                           

 Model            Unstandardized             Standardized    t      Sig. Correlations
                  Coefficients               Coefficients
                  B               Std. Error Beta                        Zero-order Partial Part
 1     (Constant) 38.889          3.071                      12.664 .000

       resi.m     -.040           .404       -.037           -.099  .924 -.037      -.037   -.037

Although residual predictors work well for the strength of the unique contribution,

observe that the significance in the preceding analysis is not correct. In removing X2 from

X1, overlap with areas c and d was also removed. So the error above represents a+c+d rather

than area a as in the multiple regression. The denominator is too large and produces F and t

statistics that are smaller, as shown by the fact that Sig. above equals .924 versus .820 in the

earlier multiple regression analyses. 

Standardized Regression Coefficients
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Intermediate Regression Analysis 6.5

Although not a measure of strength in the same sense as correlation coefficients, the

magnitude of the change in y as reflected in the regression coefficients, can also be used to

compare the contribution of different predictors. Which predictor produces the largest

change in the dependent variable? But unstandardized coefficients are generally less than

ideal for such a comparison because the amount of change in y depends not only on the

relationship between y and the predictor, but also on the variation in predictors. Specifically,

a predictor with a large range of values could have a greater impact on y even if its

regression coefficient was smaller than a predictor with a small range of values. For example,

a predictor with values ranging from 1 to 5 and a slope of 5.0 produces predicted scores

ranging from 5 to 25, whereas a predictor with values ranging from 5 to 100 and a smaller

slope of 1.0 produces predicted scores from 5 to 100, a much larger change in y.

The solution is to use standardized regression coefficients based on predictor and

criterion variables with equivalent variability (i.e., s = 1.0). The problem with unstandardized

coefficients and the solution is illustrated below. The descriptive statistics show that s for int

is much larger than s for mem. This difference needs to be eliminated to compare fairly the

contribution of the two predictors. Calculating z or normalized scores for the predictor and

criterion variables (i.e., subtracting the mean from the scores and dividing by the standard

deviation) produces z̄ = 0, sz = 1. The following analyses illustrate the process. Note that

default regression analyses also produce standardized regression coefficients.

DESCR rec mem int.

                 N Minimum Maximum Mean   Std. Deviation 
 rec             9 25      51      38.89  8.623          
 mem             9 12      27      20.89  5.183          
 int             9 88      118     102.67 11.456         

COMPUTE zrec = (rec -  38.8889)/8.6233. z = (y - M)/SD

COMPUTE zmem = (mem -  20.8889)/5.1828.

COMPUTE zint = (int - 102.6667)/11.4564.

DESCR zrec zmem zint.

                 N Minimum Maximum Mean     Std. Deviation 

 zrec            9 -1.6106 1.4045  -.000001 .9999987       All Ms = 0

 zmem            9 -1.7151 1.1791  -.000002 .9999943       All SDs = 1

 zint            9 -1.2802 1.3384  -.000003 1.0000034      
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Box 6-1. Partial r

REGRESS /DEP = rec /ENTER mem int.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .923(a) .853     .804            3.822           

 Model            Sum of Squares df Mean Square F      Sig.    
 1     Regression 507.258        2  253.629     17.366 .003(a) 
       Residual   87.631         6  14.605
       Total      594.889        8

 Model            Unstandardized             Standardized    t     Sig. 
                  Coefficients               Coefficients
                  B               Std. Error Beta
 1     (Constant) 9.605           12.979                     .740  .487 

       mem        1.598           .371       .960            4.311 .005 

       int        -.040           .168       -.053           -.238 .820 

REGRESS /DEP = zrec /ENTER zmem zint.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .923(a) .853     .804            .4431800        

 Model            Sum of Squares df Mean Square F      Sig.    
 1     Regression 6.822          2  3.411       17.366 .003(a) 
       Residual   1.178          6  .196                       
       Total      8.000          8                             

 Model            Unstandardized             Standardized    t     Sig.  
                  Coefficients               Coefficients                
                  B               Std. Error Beta                        
 1     (Constant) 6.16E-007       .148                       .000  1.000 

       zmem       .960            .223       .960            4.311 .005  

       zint       -.053           .223       -.053           -.238 .820  

Standardized coefficients are interpreted in terms of standard deviations. Specifically,

a standardized coefficient indicates how much y changes in standard deviation units given a

one standard deviation change in the predictor. Given a one standard deviation change in int,

rec will decrease by .053 SDs. Given a one standard deviation change in mem, rec will

increase by .960 SDs. These values are still far apart, but closer than were the unstandardized

coefficients, -.040 for int and 1.598 for mem. Adjusting for different variability in the

predictors has changed somewhat their relative magnitude. The change could be even more

substantial if the predictor with the larger unstandardized coefficient had the smaller

standardized coefficient, depending on the s for the respective predictors.

Partial Correlation Coefficient

A second coefficient representing the unique contribution of a
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Intermediate Regression Analysis 6.7

predictor is the partial correlation coefficient (see Box 6-1). Partial r is used less frequently

and must be interpreted with caution. Recall that SSChange can be calculated from SSRes in

Models 1 and 2, rather than SSReg because the increase in SSReg from Model 1 to Model 2

must be due to variability moving from SSRes in Model 1 since SSTotal remains the same. For

the unique contribution of int, SS r�.im = SSRes1 - SSRes2 = 88.457 - 87.631 = .826, the same

quantity calculated earlier in terms of SSReg. In terms of the Venn diagram, b = (a+b) - a. So

SSChange equals both the increase in SSReg when one predictor is added to the other, and the

decrease in SSRes when one predictor is added.

The partial correlation coefficient represents the percentage reduction in SSRes. The

partial correlation coefficient ry1.2 (note absence of parentheses), is SSChange divided by SSRes1

and can best be conceptualized in terms of SSChange as the difference in SSRes. In essence, r2
y1.2

reflects the proportion of residual variability from Model 1 that is now accounted for by the

predictor added in Model 2. That is, r2
y1.2 = SSChange / SSRes1 = (SSy�.12 - SSy�.2) / (SSy - SSy�.2).

Note that for the partial correlation, SSy�.2 is subtracted from both the numerator and

denominator. For the part correlation, SSy�.2 was subtracted only from the numerator. The

partial correlation can be calculated from the same analyses used for the part correlation.

Here is relevant output.

REGRESS /STAT = DEFAU CHANGE ZPP /DEP = rec /ENTER mem /ENTER int.

...
 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 506.432        1  506.432     40.076 .000(a) 

       Residual   88.457         7  12.637

       Total      594.889        8

 2     Regression 507.258        2  253.629     17.366 .003(b)   SSr�.im= 88.457 - 87.631

       Residual   87.631         6  14.605                           = .826
       Total      594.889        8

 Model            Unstandardized             Standardized    t     Sig. Correlations
                  Coefficients               Coefficients
                  B               Std. Error Beta                       Zero-order Partial Part
...
 2     (Constant) 9.605           12.979                     .740  .487
       mem        1.598           .371       .960            4.311 .005 .923       .869    .675

       int        -.040           .168       -.053           -.238 .820 .630       -.097   -.037

rri.m
2 = .826 / 88.457 = .0093

rri.m = �.0093 = .0966

The partial r for int shows that intelligence accounts for .93% of the 88.457 units of

variability in recall not already accounted for by mem, whereas the part (or semi-partial) r
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indicates that intelligence accounts for .14% of the total variability in recall. The partial

correlation appears in the ZPP portion of the regression output. The entry for int, -.097,

agrees with the preceding calculations. The negative sign is added because the slope for int is

negative. The partial r for mem would be obtained in a similar way. Partial rs must be

interpreted with caution. The partial r for int is larger than the part r (although still modest

because SSChange was so small) not because its contribution to prediction of recall was

stronger but because the contribution of mem alone was strong, which removed much

variability in y from the denominator and inflated the apparent strength of int.

In terms of the Venn diagram in Figure 6-1, the part correlation is b/(a+b+c+d) and the

partial is b/(a+b). Any difference between part and partial rs is due to the smaller

denominator for the partial since the numerators are the same. In terms of residual predictors

in Figure 6-3, the partial correlation is the correlation between the residual int and a residual

rec variable obtained by regressing rec on mem, as in the following regression. Note below

that the variability in residual scores for rec (resr.m) with variability predicted by mem

partialled out, i.e., SSresr.m = 88.457 = SSr  - SS r�.m, the value used previously as the

denominator for the partial r for int. 

REGRESS /DEP = rec /ENTER mem /SAVE RESI(resr.m).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .923(a) .851     .830            3.555           

 Model            Sum of Squares df Mean Square F      Sig.    
 1     Regression 506.432        1  506.432     40.076 .000(a) 

       Residual   88.457         7  12.637                     

       Total      594.889        8                             

Correlating resr.m with resi.m produces -.097, the partial r for int. The partial r is

greater than the part r because resi.m can predict a larger proportion of the residual

variability in rec (i.e., resr.m) than of the total variability in rec. The correlation matrix also

shows that resr.m is uncorrelated with mem, the predictor used to generate the residual

scores, and the subsequent regression shows the relationship of this approach to the SSs used

earlier to calculate the partial correlation.
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Intermediate Regression Analysis 6.9

CORR rec mem resi.m resr.m.

                        rec   mem   resi.m

 resi.m Pearson         -.037 .000 part r

 resr.m Pearson         .386  .000  -.097  partial r

REGRESS /STAT = DEFA ZPP /DEP = resr.m /ENTER resi.m.

 Model R       R Square Adjusted R      Std. Error of   

                        Square          the Estimate    

 1     .097(a) .009     -.132           3.53818241      

 Model            Sum of Squares df Mean Square F    Sig.    

 1     Regression   .825         1  .825        .066 .805(a) 

       Residual   87.631         7  12.519                   

       Total      88.457         8                           

This completes our introduction to MR based on two predictors. The material

generalizes readily to the overall strength and significance of more than two predictors and

the strength and significance of the unique contribution of individual predictors when there

are more than two predictors. New material generally concerns how to apply MR to specific

situations, such as nonlinear relationships and interactions.
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APPENDIX 6-1

The following analyses compute residual scores that reproduce the part and partial rs

for mem controlling for int. Work through the commands and output.

REGRESS /DEP = mem /ENTER int /SAVE RESI(resm.i).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .711(a) .505     .435            3.897           

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 108.589        1  108.589     7.151 .032(a) 
       Residual   106.300        7  15.186                    
       Total      214.889        8                            
...
Residuals Statistics(a)
                 Minimum Maximum Mean  Std. Deviation N 
 Predicted Value 16.17   25.82   20.89 3.684          9 
 Residual        -5.459  6.255   .000  3.645          9 

REGRESS /STAT = DEFA ZPP /DEP = rec /ENTER resm.i.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .675(a) .456     .378            6.798           

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 271.380        1  271.380     5.872 .046(a) 
       Residual   323.509        7  46.216                    
       Total      594.889        8                            

 Model            Unstandardized             Standardized    t      Sig. Correlations            
                  Coefficients               Coefficients                                        
                  B               Std. Error Beta                        Zero-order Partial Part 
 1     (Constant) 38.889          2.266                      17.161 .000                         
       resm.i     1.598           .659       .675            2.423  .046 .675       .675    .675 

REGRESS /DEP = rec /ENTER int /SAVE RESI(resr.i).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .630(a) .397     .310            7.162           
 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 235.878        1  235.878     4.599 .069(a) 
       Residual   359.011        7  51.287                    
       Total      594.889        8                            
...
Residuals Statistics(a)
                 Minimum Maximum Mean  Std. Deviation N 
 Predicted Value 31.94   46.16   38.89 5.430          9 
 Residual        -6.937  11.271  .000  6.699          9 

VARIABLE LABEL resm.i ''  resr.i ''.

CORR rec mem resm.i resr.i.

                        rec  mem  resm.i
 mem    Pearson         .923
 resm.i Pearson         .675 .703
 resr.i Pearson         .777 .611 .869

���������	�
���
�����



Intermediate Regression Analysis 6.11

REGRESS /STAT = DEFA ZPP /DEP = resr.i /ENTER resm.i.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .869(a) .756     .721            3.53818241      

 Model            Sum of Squares df Mean Square F      Sig.    
 1     Regression 271.380        1  271.380     21.678 .002(a) 
       Residual   87.631         7  12.519                     
       Total      359.011        8                             

 Model            Unstandardized             Standardized    t     Sig.  Correlations            
                  Coefficients               Coefficients                                        
                  B               Std. Error Beta                        Zero-order Partial Part 
 1     (Constant) 1.11E-015       1.179                      .000  1.000                         
       resm.i     1.598           .343       .869            4.656 .002  .869       .869    .869 
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Intermediate Regression Analysis 7.1

Figure 7-1. Relations among the four variables.

CHAPTER 7 - MULTIPLE PREDICTORS & AUTOMATED SELECTION

Let p equal the number of predictors in a study. Previous material covered p = 2, but most of the

conceptualization generalizes to p � 2. Researchers want to examine the overall relationship between the

dependent variable and all predictors collectively, and also examine the unique contribution of individual

predictors. The general form of the equation is: , where the ellipses (...)

represent all predictors between the third and the last. The first example includes three predictors.

Researchers for Child and Family

Services needed to determine whether

involvement with family services had a

beneficial effect on children, specifically

whether CFS involvement led children to be

less likely to engage in delinquent activities

as adolescents. Previous research failed to

obtain a significant correlation between

degree of involvement with family services

and later delinquency, suggesting that

services were not effective. To further examine this relationship, the researchers obtained data for 15

adolescents on their delinquent activities as adolescents (deli), how deprived their home environment was of

normal parental control (home), how impulsive the adolescents were as children (impu), and their

involvement with family services (serv). The MR equation will be: .

The results of the study appear below, followed by some descriptive statistics.

 S DELI IMPU SERV HOME

 1  20   44   38   27
 2  24   42   39   25
 3  21   52   41   28
 4  25   60   41   36
 5  22   35   24   21
 6  20   51   44   29
 7  37   54   29   22
 8  22   45   35   21
 9  26   67   45   34
10  23   55   33   25
11  29   52   32   29
12  20   45   37   23
13  31   57   32   23
14  22   32   28   22
15  23   43   45   33
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CORR /VARI deli TO home /STAT.

      Mean     Std. Deviation N  
 deli 24.33    4.761          15 
 impu 48.93    9.331          15 
 soci 36.20    6.483          15 
 home 26.53    4.882          15 

                      deli  impu serv
 impu Pearson         .438  
      Sig. (2-tailed) .103

 serv Pearson         -.324 .437 
      Sig. (2-tailed) .239  .103

 home Pearson         -.070 .557 .770  
      Sig. (2-tailed) .805  .031 .001

As found in previous research, the simple correlation shows little evidence that involvement with

social  services reduced delinquency, rds = -.324, p = .239. The relationship is in the expected direction

(negative), but is weak and far from significant. Impulsivity is also unrelated to delinquency, rdi = .438, p =

.103, as is home environment, rdh = -.070, p = .805. The relationships are complicated, however, because the

three predictors correlate positively with one another. The various relationships and simple rs appear in

Figure 7-1. A multiple regression analysis with all three predictors follows. We consider first the overall

relationship between delinquency and all three predictors, then the unique contribution of each predictor.

Overall Relationship between Delinquency and Three Predictors

When there are more than two predictors, the complexity of the relationships among the predictors

and the dependent variable requires more sophisticated mathematics to calculate the best-fit regression

coefficients and are not considered in this course. Think of all the direct and indirect pathways in Figure 7-1

that must be “controlled” for. Given the regression equation from SPSS, however, the steps for the overall

relationship are identical to analyses with two predictors. The equation generates predicted and residual

scores, which are used to calculate statistics that reflect the significance and strength of the overall

relationship. The Unstandardized Coefficients give the following equation:

.

REGRE /DEP = deli /ENTER impu home serv  /SAVE PRED(prdd.ihs) RESI(resd.ihs).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .722(a) .522     .391            3.71535         R2 = 165.491/317.333 = .522

 Model            Sum of Squares df Mean Square F     Sig.    

 1     Regression 165.491        3  55.164      3.996 .038(a) MSReg = 165.491/3  = 55.164

       Residual   151.842        11 13.804                    MSRes = 151.842/11 = 13.804

       Total      317.333        14                           F = 55.164/13.804 = 3.996
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Box 7-1.

Box 7-2.

 Model            Unstandardized             Standardized    t      Sig. 
                  Coefficients               Coefficients                
                  B               Std. Error Beta                        

 1     (Constant) 23.275          6.452                      3.607  .004 

       impu       .357            .128       .699            2.783  .018 

       home       .062            .346       .063            .178   .862 

       serv       -.498           .240       -.678           -2.073 .062 

Residuals Statistics(a)
                 Minimum  Maximum Mean    Std. Deviation N  

 Predicted Value 18.2317  29.4480 24.3333 3.43814        15 SSReg=(15-1)*3.43814
2=165.491 

 Residual        -4.99704 7.55203 .00000  3.29330        15 SSRes=(15-1)*3.29330
2=151.842

The best-fit regression equation can generate predicted and residual scores for

each participant. These are listed below. Standard deviations for for predicted and

residual scores can be used to calculate SSReg and SSRes, as shown to the right of the

Residuals Statistics printout. These agree with the SSs in the ANOVA section. Note that

despite having more than two predictors, the analysis partitions SSTotal into just two

components, what can be predicted and what cannot be predicted. That is, SSTotal = SSReg

+ SSRes. This is true no matter how many predictors there are.

The SSs can be used to calculate R2
d.his and F, which reflect the strength and significance of the overall

relationship. These statistics require no new formula. Collectively, the three predictors account for 52.2% of

the total variability in delinquency, and the F test in Box 7-1 warrants rejection of the null hypothesis of no

overall relationship in the population between delinquency and the three predictors; that is, we reject H0: �d.his

= 0. As with two predictors, this test is nondirectional; only individual predictors can be positive or negative.

LIST.                          y        y�           y-y�
     s   deli   impu   serv   home    prdd.ihs    resd.ihs
  1.00  20.00  44.00  38.00  27.00    21.70558    -1.70558
  2.00  24.00  42.00  39.00  25.00    20.37075     3.62925
  3.00  21.00  52.00  41.00  28.00    23.12667    -2.12667
  4.00  25.00  60.00  41.00  36.00    26.47348    -1.47348
  5.00  22.00  35.00  24.00  21.00    25.09908    -3.09908
  6.00  20.00  51.00  44.00  29.00    21.33717    -1.33717
  7.00  37.00  54.00  29.00  22.00    29.44797     7.55203
  8.00  22.00  45.00  35.00  21.00    23.18698    -1.18698
  9.00  26.00  67.00  45.00  34.00    26.85485     -.85485
 10.00  23.00  55.00  33.00  25.00    27.99704    -4.99704
 11.00  29.00  52.00  32.00  29.00    27.67145     1.32855
 12.00  20.00  45.00  37.00  23.00    22.31396    -2.31396
 13.00  31.00  57.00  32.00  23.00    29.08540     1.91460
 14.00  22.00  32.00  28.00  22.00    22.09798     -.09798
 15.00  23.00  43.00  45.00  33.00    18.23165     4.76835

The correlation matrix below demonstrates the same relationships as regression

with one and two predictors. Residual scores correlate 0 with predicted scores and with all

three predictors. The correlation between the original delinquency score and the predicted
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Intermediate Regression Analysis 7.4

Box 7-3. Change Statistics.

scores is the multiple R, and the correlation between the delinquency score and the residual score is the

square root of 1 - R2. These relationships reflect the partitioning of SSTotal into what can and cannot be

predicted by impu, serv, and home, and appear in Box 7-2.

VARI LABEL prdd.ihs '' resd.ihs ''.

CORR deli TO resd.ihs /STAT.

          Mean       Std. Deviation N  

 deli     24.3333    4.76095        15 ȳ=24.3333

 impu     48.9333    9.33095        15 
 serv     36.2000    6.48294        15 
 home     26.5333    4.88243        15 

 prdd.ihs 24.3333333 3.43814203     15 ŷ̄ = ȳ

 resd.ihs .0000000   3.29330321     15 �(y-ŷ)=0

            deli  impu  serv  home  prdd.ihs
 impu       .438  
 serv      -.324  .437  
 home      -.070  .557  .770  
 prdd.ihs   .722  .606 -.449 -.096 
 resd.ihs   .692  .000  .000  .000  .000

Unique Contribution

The preceding analyses examined the strength and significance of the overall relationship between

delinquency (deli) and the three predictors: impulsivity (impu), home environment (home), and degree of

involvement with social services (serv). Additional analyses concern the strength and significance of the

unique contribution of each predictor, below the unique contribution of serv controlling for impu and home.

The formula in Box 7-3 measure the strength and significance of the unique contribution of a predictor

controlling for any number of other predictors.

The approach extends that used with two predictors.

To calculate SSChange for three predictors, the two control

predictors are entered first and then the target predictor is

added, serv in our example. The increase or change in SSReg

reflects the unique contribution of the added predictor serv.

SSChange is used to calculate a part r2 that reflects the strength of

the unique contribution and an FChange to test the significance of the unique contribution.

REGRE /STAT = DEFAU ZPP CHANGE /DEP = deli /ENTER impu home /ENTER serv.

 Model R       R      Adjusted Std. Error of Change Statistics                              

               Square R Square the Estimate  R Square Change F Change df1 df2 Sig. F Change 

 1     .578(a) .335   .224     4.19496       .335            3.016    2   12  .087          

 2     .722(b) .522   .391     3.71535       .187            4.298    1   11  .062          
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Box 7-4.

 Model            Sum of Squares df Mean Square F     Sig.    SSChange=165.491-106.161=59.33

 1     Regression 106.161        2  53.081      3.016 .087(a) 

       Residual   211.172        12 17.598                    r2
d(s.hi)=59.33/317.333 = .187

       Total      317.333        14                                 =.522-.335 = .187

 2     Regression 165.491        3  55.164      3.996 .038(b) FChange =(59.33/1)/13.804

       Residual   151.842        11 13.804                          = 4.298

       Total      317.333        14

 Model            Unstandardized             Standardized    t      Sig. Correlations             

                  Coefficients               Coefficients                                         

                  B               Std. Error Beta                        Zero-order Partial Part  

 1     (Constant) 18.843          6.873                      2.741  .018                          

       impu       .353            .145       .692            2.438  .031 .438       .576    .574  

       home       -.444           .277       -.455           -1.605 .135 -.070      -.420   -.378 

 2     (Constant) 23.275          6.452                      3.607  .004                          

       impu       .357            .128       .699            2.783  .018 .438       .643    .580  

       home       .062            .346       .063            .178   .862 -.070      .054    .037  

       serv       -.498           .240       -.678           -2.073 .062 -.324      -.530   -.432

The part r is shown in the ZPP section, rd(s.hi) = �.187 = (-).432, with

the negative sign obtained from the regression coefficient for serv (i.e., -

.498). When SSChange is based on the addition of a single predictor, as here, a

test of the significance of the regression coefficient is equivalent to FChange.

The formula for the standard error (SE) must be adjusted for additional

predictors, as shown in Box 7-4. The denominator for SE represents the

variability in a predictor (SSserv in the present example) that is independent of

other predictors in the equation. The previous version with two predictors used SS1 × (1-r2
12), but with more

than two predictors a multiple R2 is required to remove the variability shared with all other predictors. The

following regression performs this operation to give R2
s.hi = .594. The /STAT = R option limits the output as

we only need R2
s.hi. The SS for serv can be calculated from its standard deviation, shown earlier, SSserv = (15-

1) × 6.428942 = 578.638. The final calculations for SE are in Box 7-4.

This gives, t = -.498/.240 = -2.075 and t2 = 2.0732 = 4.297 = FChange. As well, pb1 = .062 is identical to

p for FChange. The two tests are equivalent because FChange tests the significance of a single predictor; that is, the

dfNumerator for F is 1.

REGRE /STAT = R /DEP = serv /ENTER impu home /SAVE RESI(ress.ih).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .770(a) .594     .526            4.46381         

                 Minimum  Maximum Mean    Std. Deviation N  
 Predicted Value 30.4774  45.8917 36.2000 4.99495        15 
 Residual        -6.72673 5.28101 .00000  4.13268        15 

Because the regression includes /SAVE RESI(ress.ih), the preceding regression also gives a residual
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Box 7-5. Partial r

serv predictor, which can be used to calculate rd(s.hi), the correlation between the dependent variable deli and

the variability in serv that is independent of home and imp, as shown in the following correlation matrix.

VARIABLE LABEL ress.ih ''.

CORR ress.ih WITH deli impu home.

                         deli  impu  home 

 ress.ih Pearson         -.432 .000  .000

The partial correlation coefficient can be calculated using a

slight modification of the procedures with two predictors. Conceptually,

SSChange is the decrease in SSRes when the last predictor is added and can

be used to calculate the percentage reduction in SSRes from Model 1 to

Model 2, which gives the results shown in Box 7-5. The value for

partial r appears in the ZPP output. In terms of residual variables, the following regression computes the

variability in deli that is independent of home and impu. The correlation of the residual serv and residual deli

scores gives rds.hi.

REGRE /STAT = R /DEP = deli /ENTER impu home /SAVE RESI(resd.ih).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .578(a) .335     .224            4.19496         

                 Minimum  Maximum Mean    Std. Deviation N  
 Predicted Value 19.3694  28.7482 24.3333 2.75372        15 

 Residual        -4.51361 8.86663 .00000  3.88378        15 SSresd.ih = 211.172

VARIABLE LABEL resd.ih ''.

CORR deli impu home serv ress.ih resd.ih.

                         deli  impu  home  serv  ress.ih resd.ih 
 impu    Pearson         .438  
 home    Pearson         -.070 .557  
 serv    Pearson         -.324 .437  .770  

 ress.ih Pearson         -.432 .000  .000  .637  rd{s.ih}

 resd.ih Pearson         .816  .000  .000  -.338 -.530  rds.ih

The next two regressions demonstrate the difference between the part and partial rs. The part r2

represents the proportion of the total variability in deli explained uniquely by serv and the partial r2 represents

the proportion of the variability not explained by the other predictors now explained uniquely by serv.

REGRE /DEP = deli /ENTER ress.ih.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .432(a) .187     .124            4.45493         R = rd(s.ih)
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Figure 7-2. Venn Diagram.
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Figure 7-3. Residual Predictor

 Model            Sum of Squares df Mean Square F     Sig.    

 1     Regression 59.330         1  59.330      2.989 .107(a) SSRegression = SSd’s.ih

       Residual   258.003        13 19.846                    

       Total      317.333        14                           SSDeli

REGRE /DEP = resd.ih /ENTER ress.ih.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

 1     .530(a) .281     .226            3.41762225      R = rds.ih

 Model            Sum of Squares df Mean Square F     Sig.    

 1     Regression 59.330         1  59.330      5.080 .042(a) 

       Residual   151.842        13 11.680                    

       Total      211.172        14                           SSDeli - SSd’.ih

Visual Representations of Multiple Predictors

Regression with multiple predictors cannot be visualized

as readily as with two predictors. Figure 7-2 shows a Venn

diagram for the present study. Remember that it is symbolic and

areas will not correspond to actual degrees of overlap among the

variables.

Together, all three predictors account for the following

portions of SSd: b+c+d+e+f+g+h = SSd̂.his. Portion b cannot be

accounted for by home or impu, and represents the unique

contribution of serv. To obtain b we remove the variability

already predicted by impu and home: SSd̂.hi = c+d+e+f+g+h. This

gives SSd̂ s.hi = SSd̂.his - SSd̂.hi.

The part r2 is area b over the total variability in deli, that is, all the lettered areas. The partial r2 is area

b over a+b, that is, the variability in deli not predicted by home and impu alone.

Figure 7-3 shows a representation of the unique contribution

and part r in terms of a residual serv predictor. A regression with serv

as a dependent variable and home and impu as predictors creates a

residual serv that is independent of the other predictors (Ress.hi). The

solid lines represent the regression. The correlations of the residual serv

with home and impu are both 0, while the residual’s correlation with

deli gives rd(s.hi), the part r.

Although Venn diagrams and residual predictors, especially the

former, become extremely complex, they serve as metaphors for the

unique contribution of a predictor. No matter how many other
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Intermediate Regression Analysis 7.8

Figure 7-4. Graph of observed values. Figure 7-5. Graph of two-predictor
equation.

predictors (circles) there are overlapping with the dependent variable, adding another predictor (circle) to the

Venn diagram could account for variability not already accounted for by predictors already in the equation.

And the total of all areas covered represents the overall relationship between the dependent variable and the

predictors.

With respect to a residual predictor, one predictor can be regressed on all other predictors to create a

residual predictor that is independent of all the other predictors (i.e., rs = 0). The correlation between the

residual and the dependent variable will be the part r for that predictor, that is ry(1.23...p).

Given such statistics, researchers must make sense of relationships among the variables. It appears

that delinquency can be predicted by both impulsivity (positive relationship) and involvement with social

services (negative relationship), but home deprivation makes no direct contribution. Home deprivation,

however, appears to increase both impulsivity and involvement with social services, which explains their

positive correlation and masking due to the opposite direction of their influence on delinquency. Below is the

two-predictor regression analysis, without home, as well as plots of actual and predicted scores.

REGR /DEP = deli /ENTER impu serv.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .721(a) .520     .440            3.56231         

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 165.053        2  82.526      6.503 .012(a) 
       Residual   152.281        12 12.690                    
       Total      317.333        14                           

 Model            Unstandardized             Standardized    t      Sig. 
                  B               Std. Error Beta                        
 1     (Constant) 23.385          6.157                      3.798  .003 
       impu       .366            .113       .716            3.222  .007 
       serv       -.468           .163       -.637           -2.866 .014 
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Intermediate Regression Analysis 7.9

Automated Procedures for Entering Predictors

Sometimes researchers only include significant predictors in the final equation as in the previous

analysis without home. A predictor may not improve prediction or it could reduce the unique contribution of

other predictors. Note in the preceding analysis that serv became more significant than it was with home in

the equation. SPSS and other statistical packages have automated procedures for selecting equations that

exclude nonsignificant predictors. Such automated procedures must be used cautiously because they consider

only statistical criteria and not what the variables represent or hypotheses about the underlying structure. The

three procedures that we consider are FORWARD, BACKWARD, and STEPWISE. In general, the

procedures are based on whether the unique contribution of a predictor is significant; that is, whether the t-

test for the regression coefficient would be significant if it was in the equation with other predictors.

FORWARD regression enters variables one at a time IF their unique contribution is the most

significant of all predictors not yet in the equation AND their p value if entered is less than PIN (default .05,

but can be modified). Here is the correlation matrix for the delinquency dataset. No predictor is entered using

the default value for PIN because no predictor has a significance of .05 or smaller. However, impu and serv

are entered if PIN is set higher than .103, the p for impu, which is the predictor closest to being entered.

Because SPSS will choose what predictors to enter or exclude, all variables must be listed on the

/VARIABLE option, the dependent variable is identified with /DEPENDENT, and remaining variables are

treated as potential predictors.

CORR /VARI deli TO home.

       deli  impu  serv 
 impu  .438
       .103 

 serv -.324  .437
       .239  .103

 home -.070  .557  .770  
       .805  .031  .001 

REGRE /VARIABLE = impu serv home deli /STAT = DEFAU ZPP /DEP = deli /FORWARD.

Variables Entered/Removed(a)
 a Dependent Variable: deli

REGRE /VARI = impu serv home deli /STAT = DEFAU ZPP /CRITERIA = PIN(.11)

 /DEP = deli /FORWARD.

Variables Entered/Removed(a)

 Model Variables       Variables  Method          

       Entered         Removed                         

 1     impu            .          Forward (Criterion: Probability-of-F-to-enter <= .110)

 2     serv            .          Forward (Criterion: Probability-of-F-to-enter <= .110)
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Intermediate Regression Analysis 7.10

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .438(a) .192     .130            4.44184         
 2     .721(b) .520     .440            3.56231         

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 60.845         1  60.845      3.084 .103(a) 
       Residual   256.489        13 19.730                    
       Total      317.333        14                           

 2     Regression 165.053        2  82.526      6.503 .012(b) 
       Residual   152.281        12 12.690                    
       Total      317.333        14                           

 Model            Unstandardized             Standardized    t      Sig. Correlations             

                  Coefficients               Coefficients                                         

                  B               Std. Error Beta                        Zero-order Partial Part  

 1     (Constant) 13.401          6.330                      2.117  .054                          

       impu       .223            .127       .438            1.756  .103 .438       .438    .438  

 2     (Constant) 23.385          6.157                      3.798  .003                          

       impu       .366            .113       .716            3.222  .007 .438       .681    .644  

       serv       -.468           .163       -.637           -2.866 .014 -.324      -.637   -.573

Excluded Variables(c)

 Model      Beta In  t      Sig. Partial     Collinearity

                                 Correlation Statistics
                                             Tolerance

 1     serv -.637(a) -2.866 .014 -.637       .809

       home -.455(a) -1.605 .135 -.420       .689

 2     home .063(b)  .178   .862 .054        .346

Once impu is in the equation, SPSS considers the revised significance of the remaining predictors to

find which is most significant and below PIN = .11 when added to impu. Relevant statistics are shown in the

Excluded Variables section of the output. If serv was entered second, its p value would be .014. If home was

entered second, its p value would be .135. SPSS enters serv as it has a p less than .11 and is more significant

than home. Note that the statistics for serv once in the main regression with impu are the same as in the

Excluded Variables section. Once serv and impu are in the equation, home would not contribute further to

prediction of delinquency if it was added to the equation given its p value would be p = .862.

BACKWARD regression works in reverse. First, all predictors are entered into the equation and then

predictors are removed one at a time IF the p value for that predictor is the least significant of all predictors in

the equation AND the p value is greater than POUT (by default .10, but can be changed). The backward

results follow. In Model 1 with all three predictors, home has the weakest unique relationship and p = .862 is

greater than .10. It is removed, after which the p values for both impu and serv are less than .10 and remain in

the final equation.
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Intermediate Regression Analysis 7.11

REGRE /VARI = impu serv home deli /STAT = DEFAU ZPP /DEP = deli /BACKWARD.

Variables Entered/Removed(b)

 Model Variables       Variables Method

       Entered         Removed

 1     home, impu,serv .         Enter

 2     .               home      Backward (criterion: Probability of F-to-remove >= .100).

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .722(a) .522     .391            3.71535         
 2     .721(b) .520     .440            3.56231         

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 165.491        3  55.164      3.996 .038(a) 
       Residual   151.842        11 13.804                    
       Total      317.333        14                           

 2     Regression 165.053        2  82.526      6.503 .012(b) 
       Residual   152.281        12 12.690                    
       Total      317.333        14                           

 Model            Unstandardized             Standardized    t      Sig. Correlations             

                  Coefficients               Coefficients                                         

                  B               Std. Error Beta                        Zero-order Partial Part  

 1     (Constant) 23.275          6.452                      3.607  .004                          

       impu       .357            .128       .699            2.783  .018 .438       .643    .580  

       serv       -.498           .240       -.678           -2.073 .062 -.324      -.530   -.432 

       home       .062            .346       .063            .178   .862 -.070      .054    .037  

 2     (Constant) 23.385          6.157                      3.798  .003                          

       impu       .366            .113       .716            3.222  .007 .438       .681    .644  

       serv       -.468           .163       -.637           -2.866 .014 -.324      -.637   -.573

...

To understand these automated procedures, remember that the relevant p values are revised for each

predictor every time a new equation is created. The relevant p value for serv in the FORWARD procedure,

for example, was .014, its p value when impu is already in the equation, not .239, its p value alone. Similarly,

the relevant p value for serv in the BACKWARD procedure was again .014, its p value when only impu and

serv predictors were in the equation, not .062, its p value when all three predictors were in the equation.

A third procedure, STEPWISE, combines features of the FORWARD and BACKWARD methods.

STEPWISE begins by entering predictors one at a time using the PIN criterion. But after each new predictor

has been added, it reviews all of the predictors in the equation to see if any of the p values now exceed POUT

and should be removed. Here the STEPWISE procedure leads to the same results as FORWARD because

both predictors remain significant using PIN = .11. There are occasions, however, when entry of subsequent

predictors decreases the p value for earlier predictors to above POUT. In terms of a Venn diagram, predictors

added later could overlap with what was earlier the unique contribution of a predictor.

A limitation of automated procedures is that they do not consider all possible equations. Because

variables are entered or removed successively, only some of the 2p possible equations (including one with 0

predictors) are considered. Sometimes it is useful to examine all possible equations to determine the “best”
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Intermediate Regression Analysis 7.12

equation, as shown below for the delinquency study (# equations = 2p - 1 = 23 - 1 = 7, plus a null equation). In

the present case, the equation with just impu and serv appears satisfactory. In other studies, however, there

may be a “better” (i.e., stronger or more interpretable) combination of predictors.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

REGRE /STAT = R /DEP = deli /ENTER impu.

 1     .438(a) .192     .130            4.44184         

REGRE /STAT = R /DEP = deli /ENTER serv.

 1     .324(a) .105     .036            4.67417         

REGRE /STAT = R /DEP = deli /ENTER home.

 1     .070(a) .005     -.072           4.92867         

REGRE /STAT = R /DEP = deli /ENTER impu serv.

 1     .721(a) .520     .440            3.56231         

REGRE /STAT = R /DEP = deli /ENTER impu home.

 1     .578(a) .335     .224            4.19496         

REGRE /STAT = R /DEP = deli /ENTER serv home.

 1     .430(a) .185     .049            4.64344         

REGRE /STAT = R /DEP = deli /ENTER impu serv home.

 1     .722(a) .522     .391            3.71535         

Multiple Confounded Predictors

Understanding multiple predictors in a regression can be a challenge, but at the same time benefit our

understanding of psychological phenomena. For example, a predictor can appear to be very strong on its own,

but become quite weak when analyzed with other predictors. The challenge is to appreciate why this happens.

It can be understood, for example, in terms of residual predictors or Venn diagrams as presented previously.

It can be nicely illustrated by an old crime dataset.

 Crime rates vary markedly across the USA states. Forensic psychologists examined a data set that

included: crime rate (crime), percentage of the population living in metropolitan areas (pm), percentage white

(pw), percentage high school graduates (hs), percentage living in poverty (pv), and percentage single parent

families (sp). Preliminary analyses indicated that 2 of the 51 states should be excluded as outliers; they had

extreme values on crime, pw, or both. 

Researchers hypothesized that the simple correlation of crime with pw was extremely misleading

because it was confounded with so many measures of societal disadvantage. Also the direction of any

relationship was ambiguous since white Americans could move out of high crime areas. The hs statistic is a

good measure of education level in previous generations when high school graduation was less universal than

today. The predictors correlate highly with crime and with one another; notably pw correlates with all four

other predictors, especially sp.
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Intermediate Regression Analysis 7.13

CORR crime pw pm pv hs sp /STAT /MISS = LISTWISE.

Mean Std. Deviation
crime 572.90 295.603
pw 86.0653 9.12696
pm 66.5755 21.86913
pv 14.1388 4.24135
hs 76.2082 5.66196

sp 11.1510 1.46132

crime pw pm pv hs
pw -.684

.000

pm .610 -.293

.000 .041

pv .350 -.434 -.148

.014 .002 .310

hs -.287 .508 .008 -.773

.046 .000 .956 .000

sp .639 -.686 .171 .407 -.222

.000 .000 .239 .004 .125

On its own, pw is a  is a strong predictor and indeed would be the first predictor entered in a

regression using the FORWARD option. However, a regression with all predictors reveals that the

relationship between crime and pw becomes quite weak when other predictors are controlled, as indicated by

its part r squared: r2
cw.mvsp = -.1842 = .03. The significance has also been much reduced; by itself, the

significance is .000 in the correlation matrix above versus .020 in the regression alone, which benefits from a

very small error term given predictors collectively account for 75% of the variability in crime rates. 

REGRESS /STAT = DEFAU ZPP /DEP = crime /ENTER pw pm pv hs sp.

Model R R Square
1 .867 .751

Model Sum of Squares df Mean Square F Sig.
1 Regression 3151554.002 5 630310.800 25.993 .000

Residual 1042736.488 43 24249.686

Total 4194290.490 48

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.
Correlations

B Std. Error Beta Zero-order Part
1 (Constant) -599.783 656.310 -.914 .366

pw -10.125 4.193 -.313 -2.415 .020 -.684 -.184
pm 7.090 1.137 .525 6.234 .000 .610 .474
pv 23.113 9.719 .332 2.378 .022 .350 .181
hs 9.265 7.425 .177 1.248 .219 -.287 .095
sp 48.353 24.191 .239 1.999 .052 .639 .152

This pattern can be interpreted in terms of residual predictors. Most of what pw alone accounts for is

due to its considerable overlap with other predictors, as shown in the correlation matrix and the following

regression; pm, pv, hs, and sp account for 65.5% of the variability in pw.
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Figure 7-6.

REGRESS /DEP = pw /ENTER pm pv hs sp /SAVE RESID(respw).

Model R R Square
1 .809 .655

Model Sum of Squares df Mean Square F Sig.
1 Regression 2619.093 4 654.773 20.886 .000

Residual 1379.378 44 31.349

Total 3998.471 48

Model
Unstandardized Coefficients

t Sig.B Std. Error
1 (Constant) 62.605 21.628 2.895 .006

pm -.067 .040 -1.684 .099
pv .443 .343 1.292 .203
hs .855 .234 3.654 .001
sp -3.900 .641 -6.083 .000

Mean Std. Deviation N
Predicted Value 86.0653 7.38677 49

Residual .00000 5.36069 49

The overlap with other predictors is removed from the residual pw variable (respw) and reveals the

weak unique relationship between crime and pw, as shown by the part r for pw in the ZPP output above and

the correlation matrix below. Note as well that the residual predictor correlates 0 with the four other

predictors (i.e., the residual variability is unique to pw). Although the correlation is not significant in the

correlation matrix, recall that the test uses a denominator that includes variability in crime that would be

accounted for by the other predictors in the multiple regression. That is, the error is inflated.  

VARI LABEL respw ''.

CORR respw WITH crime pm pv hs sp.

crime pm pv hs sp
respw -.184 .000 .000 .000 .000

.207 1.000 1.000 1.000 1.000

Venn diagrams can also be used to conceptualize the difference

between simple and part rs; that is, why the strongest predictor alone might

become the weakest when other predictors are included in the regression.

But Venn diagrams are not easy to represent when there are multiple

predictors. Figure 7-6 demonstrates the principle for three of the crime

predictors: hs, pw, and pv. The oval with a heavy solid line represents the

dependent variable crime and the oval with a light solid line represents pw.

There is a high degree of overlap between the two (areas c, e, f, and h). But

one or both of the other predictors represented by the ovals with dashed

lines overlap with most of this area (i.e., areas e, f, and h), leaving only c

as the unique contribution of pw.
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Box 7-6.

The critical insight is to appreciate that the area represented by c,

e, f, and h can be larger than the areas for the simple correlation of crime

with hs (b, e, g, h) or pv (d, f, g, h). But as well, area c representing the

unique contribution of pw can be weaker than the corresponding areas b

for hs and d for pv. These relationships are summarized in Box 7-6.

Although weak, the remaining relationship of crime with pw (i.e.,

c in Figure 9-12 and -.184 as a part r) might be explained by other

factors not included in the regression, including some associated directly

with ethnicity. For example, non-whites may experience discrimination or economic factors prevent non-

whites moving as easily as whites to low crime communities.

Outcomes like that illustrated here for ethnicity can occur when a predictor captures much of the

variability in other predictors that is related to the dependent variable. A socioeconomic status variable

(SES), for example, might be a strong predictor by itself but not when education and occupation are included

in a regression because SES is a measure determined in large part by education and occupation (or income).

Predictors like ethnicity and SES, can be thought of as proxy variables for the collective effects of other

predictors. Analyses with such predictors can be misleading. In an extreme case, for example, including SES

as a predictor might lead to the wrong conclusion that education and occupation are unrelated to the

dependent variable.

Given how difficult it can be to tease apart the unique effect of predictors given their complex

correlations with one another and the dependent variable, alternative sophisticated statistical procedures are

sometimes more appropriate, such as factor analysis or structural equation modelling (SEM). These

procedures can identify and capture overlap of predictor and dependent variables. In essence, they identify a

possible hypothetical factor that underlies shared variability but is not explicitly measured.
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Box 8-1. Independent Groups T-Test.

CHAPTER 8 - CATEGORICAL PREDICTORS

In addition to examining relationships between numerical dependent variables and numerical

predictors, MR can accommodate categorical predictors that involve membership in two or more groups or

categories, such as gender (male or female), religious affiliation (Protestant, Catholic, Jew, Muslim, ...),

academic major (humanities, social sciences, ...), or different treatment conditions in an experiment

(experimental versus control group). Sometimes the categories are ordered (e.g., young, middle-aged, and

old adults), but often there is no meaningful ordering and numbers assigned to groups are arbitrary (e.g.,

male = 1 and female = 2; Protestant = 1, Catholic = 2, ...). In essence the numbers serve as labels rather than

amounts.

The way to accommodate such categorical variables is to use k - 1 predictors, where k equals the

number of groups and each predictor has two or more values that collectively define the groups. For two

groups, a single predictor with two values (1 or 2, 0 or 1, -1 or +1, or whatever) is sufficient. For three

groups, two predictors are required, and so on. Here we consider two groups, starting with the example of

delinquency as a function of involvement with social services, but treating involvement with social services

as a categorical variable with just two levels (e.g., none vs. some, or little vs. a lot, ...).

Categorical Predictor Only

Delinquency scores were obtained for 18 adolescents who had low or high levels of involvement with

social services (9 in each group). One test for the difference between delinquency means of the two groups is

the independent t-test presented earlier.

TTEST /GROUP = serv2 /VARI = deli.

      serv2 N Mean    Std. Deviation Std. Error Mean 
 deli 1     9 25.2222 3.45607        1.15202         
      2     9 22.7778 4.20648        1.40216         

Independent Samples Test
                 Levene's Test for      t-test for Equality of Means
                 Equality of
                 Variances
                      F               Sig.   t         df     Sig.       Mean       Std. Error

                                                              (2-tailed) Difference Difference

 deli Equal variances .049            .827   1.347     16     .197       2.44444    1.81472

Calculations for the independent t-test are

shown in Box 8-1. The H0: �1 = �2 cannot be

rejected, although the results “approach

significance” by a directional test with p = .197/2

= .0985.

The significance can also be obtained by

analysis of variance using an F test equivalent to t.

Formula are summarized in Box 8-2 and

calculations shown below.
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Box 8-2. F-test

GLM deli BY serv2 /PRINT = DESCR.

 serv2 Mean    Std. Deviation N     y�j-y�G SSy� = 9×(1.22222 + -1.22222)

 1     25.2222 3.45607        9   1.2222 = 9×2.9875 = 26.888

 2     22.7778 4.20648        9  -1.2222  MSNum = 26.888/(2-1) = 26.888

 Total 24.0000 3.94074        18  MSDen = sp
2 = 14.819

 Source          Type III SS    df Mean Square F       Sig. 
 Intercept       10368.000       1  10368.000   699.621 .000 

 serv2           26.889          1  26.889      1.814   .197 F = t2     pF = pt

 Error           237.111         16 14.819                   

SSError =(9-1)3.45607
2 + (9-1)4.206482 =237.111 

 Corrected Total 264.000         17      SSTotal = (18-1)3.94074
2 = 264.000

SSTreatment = 264.000 - 237.111 =  26.889

The preceding analyses are equivalent to a regression of delinquency scores

on a categorical predictor that represents different levels of involvement with social

services. The regression analysis below shows that the regression coefficient equals

the difference between means, predicted scores are the group means, and so on. The

values of serv2 are recoded to 0 and 1, which helps to interpret the regression

results and shows that the significance test does not depend on the specific values

used to “label” the groups. As serv2 increases by 1 unit from 0 to 1, deli decreases

by 2.444 units. If the group labels (0, 1) were reversed, the coefficient would be positive, but the magnitude

would remain the same.

RECODE serv2 (1 = 0) (2 = 1).

REGRESS /DEP = deli /ENTER serv2 /SAVE PRED(prdd.s2) RES(resd.s2).

 Model R       R Square
 1     .319(a) .102    

 Model            Sum of Squares df Mean Square F     Sig.    

 1     Regression 26.889         1  26.889      1.814 .197(a)   = ANOVA F test

       Residual   237.111        16 14.819                     MSRes = sp
2

       Total      264.000        17                           

 Model            Unstandardized             t      Sig. 
                  Coefficients                          
                  B              Std. Error                 

 1     (Constant) 25.222 =y�0     1.283      19.656 .000 

       serv2      -2.444 =y�1-y�0  1.815      -1.347 .197   = t-test
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Box 8-3.

Figure 8-1.

LIST serv2 deli prdd.s2 resd.s2.

serv2   deli     prdd.s2     resd.s2
   0   24.00    25.22222    -1.22222
   0   29.00    25.22222     3.77778
   0   24.00    25.22222    -1.22222
   0   29.00    25.22222     3.77778
   0   23.00    25.22222    -2.22222
   0   23.00    25.22222    -2.22222
   0   28.00    25.22222     2.77778
   0   19.00    25.22222    -6.22222
   0   28.00    25.22222     2.77778
   1   24.00    22.77778     1.22222
   1   16.00    22.77778    -6.77778
   1   23.00    22.77778      .22222
   1   26.00    22.77778     3.22222
   1   22.00    22.77778     -.77778
   1   18.00    22.77778    -4.77778
   1   30.00    22.77778     7.22222
   1   25.00    22.77778     2.22222
   1   21.00    22.77778    -1.77778

GRAPH /SCATTERPLOT(BIVAR)=serv2 WITH deli.

The graph in Figure 8-1 shows that a single predictor

accommodates the difference between two groups because a straight

line can always go through two points, in this case the two means. In

addition to the equivalent tests above, t for just one predictor can be

calculated using the formula for the significance of a correlation

coefficient, as shown in Box 8-3.

The situation is more complex with more than two groups (i.e., when k > 2), which requires k - 1

predictors to ensure that the regression equation generates cell means as the predicted values. More than two

groups also rules out an independent t-test and requires an F-test that can accommodate any number of

groups (although the number of groups is generally modest for categorical predictors). The extension to more

than two groups is covered in analysis of variance.

Categorical with a Numerical Predictor

Although the null hypothesis was not rejected in the preceding analyses, this is a non-experimental

study. Therefore, confounded variables may mask the hypothesized benefits of involvement with social

services. This problem was solved with multiple regression in earlier analyses of social services as a

numerical predictor by including the confounding variable (e.g., impulsivity) as another predictor. The

following analysis shows that the social service group (serv2 = 1) does indeed have a higher mean

impulsivity score, M = 51.78 for serv2 = 1 and M = 42.22 for serv2 = 0. If impulsivity correlates with

delinquency, then previous analyses do not represent the unique contribution of involvement with social

services independent of differences in impulsivity. MR can control for confounding of categorical and

numerical predictors. Other examples of categorical and numerical predictors are shown in Appendix 8-1.
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GLM impu BY serv2 /PRINT = DESCR.

 serv2 Mean    Std. Deviation N  SSTotal = (18-1)9.29896
2 = 1470.00

 0     42.2222 6.41829        9  SSError = (9-1)6.41829
2 +(9-1) 9.549583 = 1059.11

 1     51.7778 9.54958        9  SSTreatment = 1470.00 - 1059.11 =  410.89

Total 47.0000 9.29896        18 

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares 
 Intercept       39762.000       1  39762.000   600.685 .000 

 serv2           410.889         1  410.889     6.207   .024 Reject H0

 Error           1059.111        16 66.194
 Corrected Total 1470.000        17
a R Squared = .280 (Adjusted R Squared = .234)

Specifically, confounding is controlled statistically by regressing the dependent variable on both the

confounding variable and the k - 1 indicator variables that define the categorical predictor. The analyses are

shown below for serv2. The categorical predictor was added to impulsivity so that FChange represents the effect

of the categorical predictor controlling for impulsivity. For k = 2, we can also use the t-test for the

categorical variable regression coefficient. Compare the p = .026 below to p = .197 obtained from the t and

ANOVA for serv2 alone. Researchers would now reject the null hypothesis, which can be stated in terms of

the part correlation or the regression coefficient in the population.

REGRE /STAT = DEFAU CHANGE ZPP /DEP = deli /ENTER impu /ENTER serv2

 /SAVE PRED(prdd.is2).

 Model R       R      Adjusted Std. Error of Change Statistics
               Square R Square the Estimate  R Square Change F Change df1 df2 Sig.
 1     .234(a) .055   -.004    3.94889       .055            .930     1   16  .349

 2     .572(b) .327   .238     3.44067       .272            6.076    1   15  .026

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 14.501         1  14.501      .930  .349(a) 
       Residual   249.499        16 15.594                    
       Total      264.000        17                           

 2     Regression 86.426         2  43.213      3.650 .051(b)    SSChange = 86.426-14.501

       Residual   177.574        15 11.838                    = 71.925

       Total      264.000        17                           

 Model            Unstandardized             Standardized    t      Sig. Correlations

                  Coefficients               Coefficients

                  B               Std. Error Beta                        Zero-order Partial Part  

 1   (Constant)   19.332          4.929                      3.922  .001                          

     impu         .099            .103       .234            .964   .349 .234       .234    .234  

 2   (Constant)   15.211          4.609                      3.300  .005                          

     impu         .237            .106       .559            2.243  .040 .234       .501    .475  

     serv2        -4.710          1.911      -.615           -2.465 .026 -.319      -.537   -.522

When impulsivity is controlled, serv2 becomes significant, p = .026, in contrast to the nonsignificant

effect with impulsivity alone as a predictor, p = .197. The strength has also increased, as reflected in rd(s.i) = -

.522 versus the simple rd.s = -.319. There are several reasons the significance and strength increased. First,

with impulsivity in the equation, the numerator for the t-test (i.e., the regression coefficient) for serv2 is -
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Figure 8-2. Categorical and Numerical Predictors.

Box 8-4.

4.710 versus -2.444 in the previous analysis; the social service predictor has become a stronger predictor of

delinquency. The SSChange = 71.925 for the numerator of FChange is also larger than SSReg = 26.889 in the earlier

analysis with serv2 alone. The adjustment for differences between groups in impulsivity is responsible for

these increases, as demonstrated shortly. The larger value for SSChange also explains why the part r for serv2 is

stronger than the simple r; that is, rd(s.i) = -.522 versus rd.s = -.319.

Additional predictors can also reduce the error terms (i.e., the denominators) for F and t. For

example, MSRes = 11.838 in the above analysis, versus 14.819 earlier. Even numerical predictors that do not

correct for confounding can still improve the sensitivity of analyses by removing variability from the error

terms for the statistical tests. A test of the significance of a categorical predictor controlling for a numerical

variable is called Analysis of Covariance (ANCOVA). The numerical predictor is a covariate (impulsivity

here). MANOVA and GLM can also do ANCOVA.

The complicated graph in Figure 8-2 shows

visually the effects of the preceding analysis. The

open circles and dashed lines are for serv2 = 0 (low

involvement with social services) and the filled

circles and solid lines are for serv2 = 1 (high

involvement). 

The vertical lines show the mean impulsivity

scores; the dashed line on the left is for serv2 = 0

( y�Imp = 42.222) and the solid line on the right is for

serv2 = 1 ( y�Imp = 51.778). The higher impulsivity

scores for the social services group complicates

interpretation of the fact that mean delinquency

scores did not differ significantly in the earlier tests when impulsivity was not controlled. The multiple

regression, on the other hand, indicates the difference between the group means if both groups had obtained

the same average impulsivity scores, represented by the middle vertical line ( y�Imp = 47.00). 

The sloped lines are the best fit regression lines for the two groups

using the multiple regression equation from above. The calculations

shown in Box 8-4 demonstrate how the mean difference changes. The

regression equation is used to predict delinquency values for each group,

first using the observed impulsivity means for the individual groups,

42.222 and 51.778, and then using a common mean, 47.000.

The difference between the unadjusted means is 25.222 - 22.778 = 2.444, while the difference

between means adjusted for the difference in impulsivity is 26.351 - 21.641 = 4.710. These values are the

regression coefficients for serv2 alone and serv2 with impu, respectively. The horizontal lines in Figure 8-2

are means for delinquency, dashed for serv2 = 0 unadjusted for impulsivity (bottom dashed line) and
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Figure 8-3. Categorical & Numerical
Interaction.

adjusted. The solid horizontal lines are means for serv2 = 1, top for unadjusted and bottom adjusted for

impulsivity differences.

To equate on impulsivity, the serv2 = 1 group shifts down from its higher impulsivity score and the

serv2 = 0 group shifts up from its lower impulsivity score up. Note that the shift is up or down along the

regression lines and not simply a shift directly left or right. Shifts follow the regression lines because

impulsivity correlates with delinquency. The difference between serv2 = 0 and 1 becomes larger, as just

calculated. See Appendix 8-2 for instructions to create Figure 8-2.

Although it helps to think about the adjusted difference between means as representing the outcome

if there was no difference on impulsivity, the fact that the lines are parallel (i.e., bdi.s = .237) means that the

difference on delinquency will be the same (i.e., 4.710) anywhere along the line (e.g., at the intercepts). If the

lines have different slopes, however, then the difference will vary depending on the value of impulsivity. The

possibility that slopes differ (i.e., there is an interaction between the two predictors) is considered next.

Categorical Predictors and Interaction

The preceding analysis assumed that a single regression

coefficient or slope for impulsivity (bdi.s = .237) could be used for

both groups; that is, the regression lines were expected to be

parallel. It is conceivable, however, that the regression coefficient

for impulsivity differs as a function of involvement with social

services. When the relationship between two variables depends on

the levels of a third variable, then the variables are said to

interact. In the present example, the relationship between

delinquency and impulsivity may differ for low and high levels of

involvement with social services. 

Figure 8-3 graphs separate lines with different slopes, that is, a separate regression equation for each

group. These lines were created in the Chart Editor and appear to deviate very little from parallel lines; that

is, they have similar slopes that likely do not differ significantly. However, statistical tests are required to

determine the strength and significance of any deviation from parallel lines. The first step in understanding

the procedure is to find the regression coefficients from separate regressions for the two groups.

The separate regressions can be obtained using SPSS’s SPLIT FILE command. After a SPLIT FILE

command, SPSS procedures are computed separately for the groups specified on the SPLIT FILE command.

To use SPLIT FILE, the dataset must be sorted on the variable used to define groups; for example, in the

present study all serv2 = 0 and serve2 = 1 cases would be clustered together. If data is not already sorted

properly, SORT CASES BY can be used to sort cases in the appropriate order.
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Intermediate Regression Analysis 8.7

SPLIT FILE by serv2.

REGRE /DEP = deli /ENTER impu.

 serv2 Model R       R Square Adjusted R      Std. Error of   
                              Square          the Estimate    
 0     1     .471(a) .222     .111            3.25951         
 1     1     .521(a) .272     .168            3.83729         

 serv2 Model            Sum of Squares df Mean Square F     Sig.    
 0     1     Regression 21.185         1  21.185      1.994 .201(a) 
             Residual   74.371         7  10.624                    
             Total      95.556         8                            

 1     1     Regression 38.482         1  38.482      2.613 .150(a) 
             Residual   103.073        7  14.725                    
             Total      141.556        8                            

 serv2 Model            Unstandardized             Standardized    t     Sig. 
                        Coefficients               Coefficients               
                        B               Std. Error Beta                       
 0     1     (Constant) 14.517          7.659                      1.896 .100 

             impu       .254            .180       .471            1.412 .201 

 1     1     (Constant) 10.886          7.466                      1.458 .188 

             impu       .230            .142       .521            1.617 .150 

SPLIT FILE OFF.

The graph and the separate regressions demonstrate that the two lines are almost but not quite

parallel. The slope for group 1 is slightly steeper than the slope for group 2; specifically, bd.i = .254 for serv2

= 0 and .230 for serv2 = 1, a difference of .024 units. The graph and regressions demonstrate that the

intercepts for the two lines also differ (14.517 versus 10.886). Unlike parallel lines, this difference is difficult

to interpret because it represents the difference between the lines when impulsivity equals 0. The difference

between the lines will vary with impulsivity when the lines have different slopes.

The graph and preceding analyses do not tell whether the difference between slopes is significant,

although the difference is certainly small. Testing the significance of the difference in slopes requires that we

incorporate the difference between slopes into a single equation to test whether it is significant. Here each

slope was clearly not significant, but even if one were significant and the other not, we could still not

conclude that they differed significantly from one another. For example, two slopes could be quite close to

one another with one significantly different from 0 and the other not, depending on where the slopes fall

relative to the value required to reject H0.

To test the significance of the difference between slopes with only two groups, a third predictor is

created to represent the interaction, specifically the product of the first two predictors. In the present

example, we would multiple serv2 times impu to create a third predictor, called s2ximp below. The

regression coefficient for this new predictor will reflect the difference between the regression coefficients,

the .024 calculated above.
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Box 8-5.

Box 8-6.

COMPUTE s2ximp = serv2*impu.

REGRE /DEP = deli /ENTER serv2 impu s2ximp.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .573(a) .328     .184            3.56014         

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 86.556         3  28.852      2.276 .125(a) 
       Residual   177.444        14 12.675                    
       Total      264.000        17                           

 Model            Unstandardized             Standardized    t     Sig. 
                  Coefficients               Coefficients               
                  B               Std. Error Beta                       
 1     (Constant) 14.517          8.365                      1.735 .105 
       serv2      -3.631          10.861     -.474           -.334 .743 
       impu       .254            .196       .598            1.293 .217 

       s2ximp     -.024           .236       -.166           -.101 .921 

That the new predictor s2ximp represents

the difference between the two slopes is shown by

its regression coefficient  (-.024). Here the

difference in slopes is not even close to significant,

p = .921 for the interaction term, indicating that the

null hypothesis of no interaction (i.e., no difference

between the two slopes for impulsivity) cannot be

rejected. Although less obvious, the single equation from this analysis incorporates both regressions obtained

earlier. Substituting the values for serv2 (0 or 1, depending on the group) into the equation gives the

equations in Box 8-5. The multiple regression equation with the interaction term incorporates both earlier

equations.  

Summary

Given a categorical predictor, three analyses are possible and

the corresponding equations are illustrated in Box 8-6. If bx.cn = 0,

then equation three reduces to equation two and if bn.c = 0, the

second equation reduces to the first. Graphs of some interactions

between categorical and numerical predictors are shown in

Appendix 8-1. Such interactions can be important for theoretical or applied reasons.
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Appendix 8-1

Examples of Categorical and Numerical Predictors
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Figure 1. Simple Scatterplot Menu

Figure 2. Chart Editor

Figure 3. Vertical Line Added.

Appendix 8-2

Creating the Graph in Figure 8-2

First, create the basic graph via the following menu steps:

Graph | Legacy | Scatterplot | Simple | Define. This brings up the

Simple Scatterplot menu shown in Figure 1. The Y Axis, X Axis, and

Set Markers by have been added. Set Markers is where the categorical

variable goes, serv2 in our example. Y is the dependent variable deli

and X is the numerical predictor impu. Click Ok to create the basic

graph.

Next, double click on the graph to open the Graph Editor shown

in Figure 2. The left image in Figure 2 shows the pull-down menu for

Options. Figure 8.2 requires that we add vertical lines (X Axis

Reference Line), horizontal lines (Y Axis

Referent Line), and an equation for each group

derived from our regression analysis

(Reference Line from Equation). These can be

added by selecting the relevant option or by

clicking on the corresponding symbol on the

overall Chart Editor menu shown in the right

image in Figure 2.

Now add and modify the elements

shown in Figure 8-2. Figure 3 shows the

outcome of selecting the X Axis Reference

Line option. SPSS inserts a line at some point

it deems reasonable, but the actual location can

be set in the Properties menu box labelled

Position. Here it contains the mean impu score

for serv2 = 1.

Using the Y Axis Reference Line option, the mean deli

score for serv2 = 1 can be added and is shown in Figure 4.

The final requirement for serv2 = 1 is the equation

derived from: . For s = 1, the

equation becomes:

. Selecting

Reference Line from Equation brings up Figure 4. SPSS has
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Figure 4. Reference Line from Equation Option

added a line from an equation that appeared initially in the Custom Equation box. But now the above

equation has been added. When applied, the line in the figure will move and, as expected for a regression

line, it will pass exactly through the intersection of our vertical and horizontal lines (i.e., the means for X and

Y).

The same steps would be followed

for serv2 = 0: vertical line at its mean

impu, horizontal line at its mean deli, and

the equation from above for s = 0, which

would be 15.211 + .237i, because 4.715×0

= 0.

The remaining lines in Figure 8.2

are a vertical line at the overall mean impu

score for both groups and horizontal lines

where that vertical line intersects the

equations. These intersection points

represent mean deli scores adjusted for

impulsivity. 
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Figure 9-1. Decelerating nonlinear
relationships.

Figure 9-2. Accelerating nonlinear
relationships.

Chapter 9 - Nonlinear Regression

Not all relationships between predictor and criterion variables are

linear. For a linear relationship, a unit change on X produces exactly the

same amount of change on Y no matter where X falls along the scale.

For example, the effect on Y of a 10 point difference on X would be the

same whether the comparison was 110 vs 100 or 210 vs 200. This

defines a straight line (i.e., an equation with a single slope across the

entire range of X). In multiple regression, the two regression coefficients

represent linear effects for both dimensions giving a rigid, flat plane of

predicted values.

But sometimes the change in Y varies (i.e., grows steeper or less

steep) across values of X. In studies of forgetting, for example, the

amount of information lost may be greater early in the retention interval

and less later in the retention interval. This pattern is represented by the descending curve (diamonds) in

Figure 9-1. Note that the loss between X = 20 and X = 30 (about 10 unit decrease on Y) is much greater than

the loss between X = 60 and X = 70 (less than 5 unit decrease on Y). The increasing curve (circles) shows a

pattern in which more positive change occurs early and less positive change occurs later along the values of

X. A study of learning, for example, may show more learning across the first 10 trials than across the last 10

trials.

In other situations, the amount of change (increase or decrease)

may be greater at higher values of X than at lower values of X. Idealized

patterns of this sort are shown in Figure 9-2. The decreasing curve

(circles) shows a negative relationship that becomes even more negative.

This might occur, for example, in a study of fatigue over time; there may

be little deterioration initially, and more marked loss in performance

later. The increasing curve (diamonds) shows a positive relationship that

becomes even more positive. In learning to solve insight problems, for

example, people may not improve very much initially, but eventually

improve more rapidly with greater experience.

Such nonlinear relationships occur in many areas of psychology.

See Appendix 9-1 for some examples. There are several ways to accommodate nonlinear relationships; we

consider two main approaches: polynomial regression and transformations. An interaction approach is

discussed briefly, as well as more sophisticated methods to analyze nonlinear relationships that avoid some

problems with the preceding approaches.
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Figure 9.4.

Figure 9-3. Nonlinear relationship.

Identifying Nonlinear Relationships with Graphs

To illustrate analysis of nonlinear relationships, consider the

old USA dataset on crime rates by state that illustrates not only

nonlinear relationships but also how misleading simple correlations

can be (see discussion in Appendix 7-2). One of several predictors

was percentage of the population that was white (abbreviated as pw

or pctwhite). The basic relationship is shown in Figure 9-3. The

linear relation shown by the solid line is quite good, r2 = .468,

although additional analyses in Appendix 7-2 revealed that the linear

relationship between the two variables became very weak when other

factors were controlled. Moreover, some part of the relationship

could reflect aspects of the criminal justice system that are biased

against minorities. But here we examine how to capture the non-linear relationship.

One visual cue for nonlinearity is that deviations of observed values from predicted values vary

systematically across values of pctwhite. Specifically, residuals for low and high values of pctwhite tend to

be negative (i.e., the linear equation over-predicts those observations), whereas residuals for moderate values

of pctwhite tend to be positive (i.e., the linear equation under-predicts). For purely linear relationships,

deviations above and below the best-fit straight line tend to be evenly distributed across the range of X. We

return to the dashed line of fit in a moment.

Although plots of Y against X often reveal the

nonlinear nature of relationships, a stronger visual “test”

plots residual Y scores from a linear regression of Y on X

(i.e., REGRESS /DEP = crime /ENTER pctwhite /SAVE

RESI(resc.w). Residual crime scores are shown in Figure

9.4 as a function of the predictor. As shown before, r = 0

for the relationship between the residual and X. A dashed

line has been inserted at 0, the mean of residual scores,

and makes the pattern of positive and negative residuals

more obvious. Specifically, negative residuals are more

common at the extremes of pctwhite and positive

residuals more common in the middle. Adding a

nonlinear prediction in the chart editor would strengthen

this impression. It would be an inverted U-shape.

Polynomial Regression

One approach to the analysis of nonlinear relationships is polynomial regression. In polynomial

regression, the predictor X is used to generate X2 (and sometimes X3, X4, and so on) values. The new X2
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predictor is included with X in a multiple regression. This allows for a nonlinear relationship; the dashed line

in Figure 9-3 is a polynomial fit, called quadratic because it includes X and X2, but not higher powers of X.

The quadratic regression for the crime study is shown below. Including pctwhite2 (i.e., X2) along

with pctwhite (i.e., X) markedly increases SSReg and R2, resulting in a substantial part r2 = .149 and a highly

significant unique effect for the pctwhite2 predictor, F = 17.959 or t = -4.238, p = .000. In short, pcwhite2

demonstrates a substantial and significant unique contribution to the prediction of crime rates, over above the

linear effect represented by pctwhite. If the relationship was purely linear, the statistical results for the unique

contribution of pctwhite2 would be minimal.

COMPUTE pctwhite2 = pctwhite**2.

REGRE /STAT = DEFAU CHANGE /DEP = crime /ENTER pctwhite /ENTER pctwhite2.

 Model R       R      Adjusted Std. Error of Change Statistics

               Square R Square the Estimate  R Square Change F Change df1 df2 Sig. F Change 

 1     .684(a) .468   .457     217.875       .468            41.358   1   47  .000          

 2     .786(b) .617   .601     186.770       .149            17.959   1   46  .000          

 Model            Sum of Squares df Mean Square F      Sig.    

 1     Regression 1963225.985    1  1963225.985 41.358 .000(a) 

       Residual   2231064.505    47 47469.458                  

       Total      4194290.490    48                            

 2     Regression 2589676.343    2  1294838.172 37.120 .000(b) 

       Residual   1604614.147    46 34882.916                  

       Total      4194290.490    48                            

 Model            Unstandardized             Standardized    t      Sig. 

                  Coefficients               Coefficients                

                  B               Std. Error Beta                        

 1     (Constant) 2479.966        298.172                    8.317  .000 

       pctwhite   -22.158         3.446      -.684           -6.431 .000 

 2     (Constant) -6352.548       2099.853                   -3.025 .004 

       pctwhite   193.942         51.079     5.988           3.797  .000 

       pctwhite2  -1.304          .308       -6.683          -4.238 .000 

Essentially the fit is better because the quadratic equation in model 2 generates predicted scores that

follow a curve rather than a straight line. The resulting curve is the dashed line shown in Figure 9-3 along

with the best-fit straight line. The curve was created by SPSS in the chart editor, but could also have been

generated by saving the predicted values from the best-fit equation in model 2. This analysis reveals that the

crime rate stays relatively flat until pctwhite reaches 85% or so. Then it starts to decline. Such a pattern

probably involves a different explanation than a simple linear relationship, as discussed later.

Transformations of Predictor

A second approach to nonlinear relationships is to transform the predictor. In essence the predictor

can be  transformed (and/or the criterion variable) to make the relationship more linear. This involves

stretching out or compressing the predictor or criterion variable. We focus on the predictor because

transforming the dependent variable can be problematic for multiple predictors given the specific

transformation required for the dependent variable could vary across predictors. But there is only one

dependent variable and it cannot be transformed in multiple ways in the same analysis.
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Figure 9-5.

Figure 9-6.

Figure 9-7.

Figure 9-8.

Figure 9-5 shows a hypothetical curvilinear relationship

between X and Y. Deviations of observed from the linear predicted

values are positive for low and high values of X, and negative for

intermediate values of X. Although R2 = .958 for the linear fit is

excellent, R2 = .994 for the quadratic is even better. Transforming X

would improve the linear relationship. The data in Figure 9-5 improves

if we compress X. Compressing or stretching the predictor is done by

raising the predictor to some power. Powers less than 1 compress X

and powers greater than 1 stretch it out. 

To illustrate what is meant by compression and stretching,

consider the numbers 1, 4, and 9. On this scale, the distance between 9

and 4 (5 units) is greater than the distance between 4 and 1 (3 units). But

if we compress the scale by raising the numbers to a power less than 1

(.5 = square root), we obtain 1.5 = 1, 4.5 = 2, and 9.5 = 3 with equal

distances between the previous differences. The upper end has been

compressed. Values less than .5 (e.g., ~0 = logarithm, -1 = reciprocal)

would compress the upper values even further. Figure 9-6 shows the relationship between Y and the square

root of X (i.e., X.5). The linear relationship is now perfect, not surprising since Y equals the square root of X.

Consider next starting with the values 1, 2, and 3. Raising these numbers to a power greater than 1

(e.g., squaring them) stretches out the upper end so that what were equal

distances become larger for the upper values; that is, 12 = 1, 22 = 4, and

32 = 9. The equal difference between 1-2 (1 unit) and 2-3 (1 unit) on the

original scale is now 1-4 (3 units) and 4-9 (5 units). X is more spread

out.

Figure 9-7 shows a relationship that would benefit from an

expansion of X. The curve is steeper at higher values of X than lower

values. Again, the quadratic improves on the linear, even though the

linear equation is itself very good. Expansion requires a power greater than 1. Figure 9-8 shows the plot for

Y as a function of X2. The fit is perfect, in this case because Y equals X2.

Examine the graphs in Figures 9-1 and 9-2, to determine why the

data in Figure 9-1 results in a better fit if X is compressed, whereas the

data in Figure 9-2 benefits from X being stretched out.

The crime and pctwhite relationship requires that pctwhite be

stretched out. The following analyses examine the effect of different

transformations on R2 (recall that R2 = .617 for the quadratic regression

and R2 = .468 for the linear regression). With the transformation
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approach, ONLY the transformed variable is used as a predictor, and not the original X (as was done in

quadratic regression). Note below that transformations less than one produce a poorer fit than the linear,

while transformations greater than one produce a better fit, although never as good as the quadratic, at least

up to the fourth power. One issue with higher powers is making sense of the transformed predictor. The best

that can be done in many cases is to simply think of it as expanding or contracting the predictor. SPSS’s

CURVE ESTIMATION procedure described later can also perform and analyze some transformations.

COMPUTE wreciprocal = pctwhite**-1.

COMPUTE wlogarithm = lg10(pctwhite).

COMPUTE wsquareroot = pctwhite**.5.

COMPUTE w2 = pctwhite**2.

COMPUTE w3 = pctwhite**3.

COMPUTE w4 = pctwhite**4.

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    

REGRE /STAT = R /DEP = crime /ENTER wreciprocal.

 1     .632(a) .400     .387            231.425         

REGRE /STAT = R /DEP = crime /ENTER wlogarithm.

 1     .660(a) .435     .423            224.490         

REGRE /STAT = R /DEP = crime /ENTER wsquareroot.

 1     .672(a) .452     .440            221.131         

REGRE /STAT = R /DEP = crime /ENTER pctwhite.

 1     .684(a) .468     .457            217.875         <<<<< Original predictor

REGRE /STAT = R /DEP = crime /ENTER w2.

 1     .705(a) .498     .487            211.755         

REGRE /STAT = R /DEP = crime /ENTER w3.

 1     .723(a) .523     .513            206.272         

REGRE /STAT = R /DEP = crime /ENTER w4.

 1     .738(a) .545     .535            201.524

One challenge students sometimes have with transformations is the incorrect belief that there is

something “sacred” about the numerical values for measures and they cannot be changed. That is, isn’t there

something fixed about IQ scores, measures of depression, or a person’s age that makes it inappropriate to

stretch or compress the scales? But psychologically the answer is no. Consider age. Is it really the case that

the “aging” process is necessarily the same between 40 and 50 and between 70 and 80 (i.e., 10 years of

“aging” in each case). No, because 10 years might represent greater physiological or other changes that result

in more loss of cognitive functioning between 70 and 80 than between 40 and 50. That defines a nonlinear

relationship. But given this, it would be perfectly sensible to transform the age variable so that the interval

between 70 and 80 was larger than the interval between 40 and 50. Squaring the numbers produces an

interval of 1500 between 702 and 802 versus an interval of 900 between 402 and 502.

Another useful example is the relationship between happiness and gross domestic product (GDP) of

countries. Certainly an increase in GDP from $1,000 a year to $2,000 a year is going to have more impact on

well-being than an increase from $50,000 a year to $51,000 a year. Again that defines a nonlinear

relationship.

Consider also performance on a cognitive task (e.g., arithmetic) and three people who took 10, 20,

and 30 minutes to solve 60 problems. It would appear that the difference between persons 1 and 2 (i.e., 10
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Figure 9-9.

minutes) is the same as the difference between persons 2 and 3 (i.e., 10 minutes). But what if we instead

measure problems-per-minute (ppm); now we have scores of 60/10 = 6 ppm for person 1, 60/20 = 3 ppm for

person 2, and 60/30 = 2 ppm for person 3. Now the difference in scores between persons 1 and 2 (i.e., 3

ppms) is greater than the difference in scores between persons 2 and 3 (1 ppm). Clearly nothing indicates that

one of these measures is inherently better than the other despite the fact they are not linear equivalents.

Similar logic applies to many variables. Apply this same reasoning to the graphs of nonlinear relationships or

transformed predictors shown in Appendix 9-1.

Supplementary Material on Nonlinear Relationships

The following material demonstrates some limitations of the preceding analyses and alternative

approaches to nonlinear relationships. However, you are not responsible for learning these analyses. One

limitation of the procedures described so far is that quadratic equations modify the direction of change only

once, which means that eventually the curve begins to arc in a direction that makes little sense. The quadratic

equation in Figure 9-9 curves down as pctwhite becomes increasingly small. While there may be situations in

which such a reversal is appropriate, it is more likely in the present case that the fit should flatten out rather

than start to decrease again. A limitation of the transformation approach is that some transformations may

not be meaningful. The log of X, for example, might indeed correspond to a rational transformation. But the

logic of raising X to the power of four might be difficult to grasp. We consider two approaches to nonlinear

relationships that avoid these problems.

Interaction and Nonlinear Relationships

One alternative approach to nonlinear

relationships is to fit two or more straight lines to

the data by entering interactions between levels of

the predictor (e.g., low vs high) and the values.

Each line would have a different slope, allowing

for a better fit to nonlinear data and often

demonstrating something important about the

relationship. Although there are ways to determine

statistically the optimal break-point, the following

regression uses pctwhite = 85 based on the graph

in Figure 9.3. The graph in Figure 9-9 shows the

results corresponding to the following regression

analysis. Up to pctwhite = 85, there is little change

in crime rate, r2 = .0006. Beyond 85, there is a marked decline, r2 = .62. 

The first step in the analysis is to create a categorical variable that represents low and high values for

pctwhite. The following commands create w2, which equals 0 for low values and 1 for high values. The

values of 0 and 1 work well for the later regression, but for the graph we need to use values of 1 and 2 as
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GRAPH does not recognize 0 as a distinct group when plotting separate lines for two groups. RECODE

produces a new variable w2b with values of 1 and 2 for the low and high pctwhite groups, respectively. The

GRAPH command then produces the graph in Figure 9-9 and the Chart Editor adds the separate regression

lines. The line is quite flat for low scores (w2b = 1) and strongly negative for the high scores (w2b = 2).

COMPUTE w2 = 0.

IF pctwhite > 85 w2 = 1.

RECODE w2 (0=1) (1=2) INTO w2b.

GRAPH /SCATTERPLOT(BIVAR)=pctwhite WITH crime BY w2b.

The regression analysis corresponding to Figure 9-9 requires an interaction term as in earlier analyses

for categorical and numerical predictors. The predictor wxw2 below represents the interaction. The R2 = .628

in the regression is higher than R2 = .468 from the simple linear regression. Also, the interaction term is

highly significant confirming that the two regression coefficients represented in Figure 9-9 are significantly

different.

COMPUTE wxw2 = pctwhite*w2.

REGRE /DEP = crime /ENTER w2 pctwhite wxw2.

Model
          

 R                R  Square
1 .793 0.628

Model
       Sum of     

Squares               df        Mean Square
                    

F              Sig.
1 Regression 2634626.129 3 878208.71 25.338 .000

Residual 1559664.36 45 34659.208

Total 4194290.49 48

Model

Unstandardized
Coefficients

Standardized
Coefficients

          t            Sig.           B        Std. Error                   Beta
1 (Constant) 766.843 539.277 1.422 0.162

w2 4232.248 1009.095 7.048 4.194 .000
pctwhite 0.468 7.035 .014 .066 0.947

wxw2 -50.063 11.618 -7.701 -4.309 0

Although not shown, separate regressions resulted in a regression coefficient of +.47 for the low scores

and -49.59 for the high scores. This gives a difference between the slopes of -49.59 - +.47 = -50.06, the

coefficient for wxw2.

One benefit of a better fit for the data is that it can reveal important features of the data. In the present

case, for example, Figure 9-9 shows that there is no relationship between pctwhite and crime until we reach

states that are almost entirely white. It is not the case that in general more white residents translates into less

crime in a linear way, and there would be many features that are unique to states with largely white populations.
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Figure 9-10.

Figure 9-11.

Figure 9-10 shows one strong candidate, the 

difference between largely urban and largely rural

states, with pctwhite being especially high in rural

states. Note that the pattern here is very similar to

the pattern in Figure 9-9, relatively flat up to about

85% pctwhite and then a decline above that. Crime

rates might be lower in rural states, if only because

opportunities for many crimes (e.g., shop-lifting)

could be fewer.

Nonlinear Regression

There are statistical tools more powerful than the preceding approaches to fit nonlinear equations,

including NLR in SPSS. Like most such programs, NLR requires the researcher to specify the general form of

a nonlinear model for the data and then NLR finds the values (parameters) for the model that give the best fit

to the data. Below are commands that calculate a nonlinear equation to fit the crime rate data. The form of the

equation is: y = a + b*cpctwhite and NLR estimates the best values for a, b, and c. These values are bolded in the

output. Raising a value to the power of pctwhite (or in general X) produces a nonlinear prediction.

MODEL PROGRAM  a=10 b=.5 c=1.01.

COMPUTE  PRED_=a + b*c**pctwhite.

NLR crime  /PRED PRED_   /CRITERIA SSCONVERGENCE 1E-8 PCON 1E-8.

Parameter Estimate Std. Error
a 894.121 97.601

b -0.031 .108

c 1.109 .039

Source Sum of Squares              df                                Mean Squares
Regression 18583488.537 3 6194496.179
Residual 1693193.463 46 36808.554
Uncorrected Total 20276682.000 49
Corrected Total   4194290.49   48
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .596.

The parameters for the model generate predicted crime

rates, as shown below, although NLR can also generate

predicted values. The GRAPH command creates a single plot

containing the observed data (crime) and the predicted values

(crimenl) as a function of pctwhite. The resulting plot is Figure

9-11.

COMPUTE crimenl = 894.121 + -.031*1.109**pctwhite.

GRAPH  /SCATTERPLOT(OVERLAY)= pctwhite pctwhite

     WITH crimenl crime (PAIR).
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The open circles are the actual data. The filled circles are the predicted values and follow the data

quite closely. In contrast to the quadratic equation, the predicted values stay flat at low values for pctwhite,

rather than decreasing. Parameter a = 894 determines where the equation levels off, and is called the

asymptote. The other parameters determine whether there is an increase or decrease and how rapid any

nonlinear change is. Correlating the observed crime scores and the predicted crime scores produces r = .772

and r2 = .596 as shown above in the NLR output. Recall that R2 = .617 for the quadratic regression. Here we

have a similarly strong relationship with a single predictor. This “elegant” statistical analysis just needs an

equally elegant theoretical explanation. Appendix 9-1 show some examples of nonlinear relationships.
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APPENDIX 9-1: EXAMPLES OF NONLINEAR RELATIONSHIPS
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