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PREFACE

This is the second of two manuscripts. The first reviewed basic statistics and then expanded on

regression, specifically introducing students to multiple regression and its applications. The current

manuscript assumes a basic understanding of statistics. The correspondence between ANOVA and multiple

regression is demonstrated in places, but constitute distinct sections that can be omitted if students are not yet

familiar with multiple regression. However, certain aspects of ANOVA (e.g., contrast analyses) do benefit

from an understanding of regression.

And slightly edited from the Preface of the regression manuscript ...

ANOVA as presented in this manuscript involves only basic mathematical operations. Understanding

material like statistics requires practice and repetition, and also benefits from exposure to alternative

conceptualization of important features, such as interaction effects. Although, conceptual repetition can seem

confusing and redundant, it results in a deeper understanding of the analyses.

With respect to SPSS, I focus on syntax, which is to be recommended over a menu approach. It

provides a record of the analyses, makes it easy to correct and rerun analyses, allows creation of simulations

to generate data, and gives access to some procedures not available by menu (e.g., MANOVA).

Thanks to several colleagues who have contributed to my own understanding of regression and to the

many students over the years who tolerated my sometimes “casual” lectures on this material. Errors or

suggestions? Please e-mail j.clark@uwinnipeg.ca. Thanks ... Jim
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Analysis of Variance 1.1

CHAPTER 1 - SINGLE FACTOR BETWEEN-SUBJECTS OMNIBUS F TEST

Analysis of Variance (ANOVA) is typically used when research designs have the following

characteristics: relatively few predictors (i.e., factors, independent variables), each factor involves a small

number of levels or conditions, multiple factors are uncorrelated with one another (i.e., independent,

orthogonal), and levels of the factors are unordered (i.e., categorical), although ordered (i.e., numerical)

factors can be accommodated with appropriate supplementary analyses. Factors can be experimental

manipulations (e.g., Treatment, Control) or natural, pre-existing differences (e.g., Young, Middle Age, Old).

An equal number of subjects in each condition is also common and can simplify analyses.

ANOVA designs include one or more of two types of factors. Between-Subject factors compare

groups that involve independent or uncorrelated observations; that is, there is no correlation between scores at

different levels of the factor. Between-S factors could be different experimental conditions for unrelated

subjects (e.g., different instructions in a memory task for two or more groups of subjects, different treatments

for psychopathology applied to different clients, different methods of teaching reading used in different

classrooms, ...), or pre-existing individual differences such as gender (two levels) if they involve uncorrelated

observations. ANOVA for a single Between-S factor with two levels (e.g., Treatment vs. Control; Male vs.

Female) is equivalent to an independent groups t-test. But ANOVA is required for more than two levels (e.g.,

Control vs. Placebo vs. CBT; Young vs. Middle Age vs. Old with unrelated participants at each age level).

The second type of factor in ANOVA designs are Within-Subject factors, which involve observations

that are correlated at different levels of the factors. For example, each subject in an experiment could be

exposed to all conditions (e.g., Pretest vs. Posttest designs; memory for lists that contain both Concrete vs.

Abstract words). Or within-S factors can compare pre-existing groups (e.g., Male vs. Female; Young vs.

Middle Age vs. Old) if scores are correlated (e.g., twins, longitudinal study of the same people at different

ages). ANOVA for a single Within-S factor with two levels is equivalent to a paired-difference t-test.

ANOVA is required for more than two levels (e.g., Pre vs. Post vs. Follow-up).

From a statistical perspective, ANOVA designs vary in the number of factors and whether each factor

is Between-S or Within-S. Studies with two or more factors are called factorial designs. A comparison of

recall given subjects assigned randomly to one of four instructional conditions is a single-factor Between-S

design. A study comparing pretest, posttest, and follow-up depression scores for people randomly assigned to

a control group or a treatment group is a two-factor mixed design with one Between-S (Control vs.

Treatment) and one Within-S (Pre vs. Post vs. Follow-up) factor.

Ideally in a factorial design, the multiple factors are orthogonal to one another (i.e., independent,

uncorrelated), which requires that all levels of each factor occur with all levels of other factors. For example,
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a study with two factors each with two levels (e.g., A1 & A2, B1 & B2), would have four conditions or cells

defined by all possible combinations of the two factors: A1+B1, A1+B2, A2+B1, and A2+B2. A and B are

uncorrelated or orthogonal because every level of A occurs with every level of B. Even with such a design,

however, orthogonality can be upset by unequal numbers of observations per cell. Independence is a desirable

characteristic of factorial designs, and differentiates such designs from correlated predictors that require

multiple regression to determine unique effects. Numerous possible ANOVA designs exist. The first three

chapters examine the most basic design, a single-factor Between-S design that involves two or more groups

and observations that are independent across groups.

Robert Hare, developer of the Psychopathy Check List (PCL), wrote a book called “Snakes in Suits”

summarizing evidence that some business leaders demonstrate characteristics of psychopaths related to their

success. To examine this hypothesis, specifically whether business programs develop such traits or they pre-

exist in students who choose business, organizational psychologists administered a measure of psychopathy

to 20 university students, five from each of four majors: humanities (group 1), social science (2), natural

science (3), and business (4). Students in the four majors were unrelated, which means that observations were

uncorrelated or independent across groups. The results appear below, along with descriptive statistics for

each group indicated by a subscript j = 1, 2, 3, or 4. In general, j = 1, 2, ..., k, where k is the number of levels

of the factor. Descriptive statistics are also given for the overall sample, indicated by a subscript G for grand

(e.g., y&&G is the grand mean).

Major (j = 1, 2, 3, 4)

j 1 2 3 4

2 1 5 9
6 5 5 8
4 3 8 7
1 1 2 7
7 5 5 9

y&&j y&&1=4.0 y&&2=3.0 y&&3=5.0 y&&4=8.0 y&&G = 5.0

sj s1=2.54951 s2=2.00000 s3=2.12132 s4=1.00000 sG = 2.65568

nj n1=5 n2=5 n3=5 n4=5 N = 20

Because there is only one factor (i.e., Major) and observations in each group are independent of one

another (i.e., there is no reason to expect scores for different majors to correlate), the appropriate analysis is a

single factor Between-S or independent groups ANOVA based on the F test. This analysis requires two

variances (or mean squares), one for the numerator that represents variability between means for each group,

and one for the denominator that represents random or error variability within groups. Calculation of these

variances requires a SS and a df for each.
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Box 1-1. SSError

Consider first the denominator, SSError or SSWithin. Deviations of scores from the group means represent

random variation or noise in that we do not know why one person in a condition scored higher or lower on

the dependent variable than other people in that same group. Each observation can be represented as yij,

where j represents a group and i identifies individual observations in each group. In our study, for example,

y42 is the 4th score in group 2 (i.e., y42 = 1). In the psychopathy study, subject 1 in group 1 obtained a low

score of 2 (y11 = 2) and subject 2 a higher score of 6 (i.e., y21=6). Both are Humanities majors, which does not

explain the variability in scores. It must be some unknown influence and is treated as error.

There are several ways to compute SS within each group, as shown in Box

1-1. The means for each group are represented by y&&j, which becomes y&&1, y&&2, y&&3,

and y&&4. The notation in the first line states: subtract the group mean, y&&j, from each

yij, square the resulting deviation, and sum the squared deviations over the number

of observations in each group, nj, and over the number of levels of the factor, k = 4

in the present study. The sum of squared deviations of each observation from its group mean is SS for each

group, that is SSj = '(y - y&&j)
2 = (nj - 1)sj

2. These SSjs are summed again over levels of j to get SSError. To

illustrate for group 1:

SS1 = (2-4)
2 + (6-4)2 + (4-4)2 + (1-4)2 + (7-4)2 = 26.0

or SS1 = (n1 - 1)s1
2 = (5 - 1)2.549512 = 26.0

Standard deviations can be used to calculate SS2, SS3, and SS4 and then the four SSs are summed to

produce SSError.

SS2 = 4×2.00000
2 = 16.0

SS3 = 4×2.12132
2 = 18.0

SS4 = 4×1.00000
2 =  4.0.

SSWithin or SSError = GSSj = 26.0 + 16.0 + 18.0 + 4.0 = 64.0.

The df for SSError is obtained by summing the df for the separate SSjs; that is,

dfError = (5-1) + (5-1) + (5-1) + (5-1) = 16

or dfError = N - k = 20 - 4 = 16

N equals the total number of observations and k equals the number of levels to our factor. Given

SSError and dfError,

MSError = SSError/dfError = 64.0 / 16.0 = 4.0

These calculations are a generalization of the formula for sp
2 for the independent groups t-test, which

was: (SS1 + SS2) /(n1 + n2 - 2) .
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Box 1-2. Formula for SSTreatment.

Box 1-3. Analysis of Variance.

Turning to the numerator, variability between groups is obtained by

calculating the squared deviation of each treatment mean from y&&G weighted

by the number of observations in each group (see Box 1-2).  These

calculations are illustrated below.

Major y&&j y&&j - y&&G

1. 4.0 -1.0

2. 3.0 -2.0

3. 5.0  0.0

4. 8.0 +3.0

y&&G 5.0

SSBetween = Gnj(y&&j - y&&G)
2 = 5×-1.02 + 5×-2.02 + 5×0.02 + 5×3.02 = 70.0

or if njs are equal = 5×(-1.02 + -2.02 + 0.02 + 3.02) = 70.0

The critical feature of SSBetween is that it reflects how much the group means differ from one another. If

they were all the same then they would all equal the grand mean (y&&G) and SSBetween would be 0. The more the

group means vary, the more they deviate from the grand mean, and the larger SSBetween becomes. The df for

SSBetween equals the number of group means minus 1 for the grand mean; i.e., dfBetween = k - 1 = 4 - 1 = 3. 

Hence,

MSBetween = 70.0 / 3 = 23.333

The ratio of MSTreatment over MSError produces an F statistic to test

whether there is significant variability in the group means relative to the

random variability within groups. As shown in Box 1-3, F tests the null

hypothesis that the k population means are all equal. For our study:

H0: μHumanities = μSocialScience = μNaturalScience = μBusiness

Ha: one or more equality is false

FObserved = 23.333 / 4.0 = 5.833 df = k - 1, N - k = 3, 16

For α = .05, FCritical = 3.24 Reject H0, Accept Ha

Given α = .05, researchers would reject H0 that the four population means are equivalent, and accept

the alternative hypothesis that one or more equality is false. This alternative hypothesis is vague in that it

does not specify which groups differ from one another. Follow-up analyses presented in the next chapter

allow for more specific conclusions about the nature of the differences among the groups. To distinguish it

from more specific comparisons using F, the current F is referred to as the Omnibus F test because it tests the

significance of the overall (omnibus) variability in the treatment means.

Before considering how SPSS carries out this analysis, note that ANOVA has partitioned the total
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variability in scores into variability between groups (the numerator) and variability within groups (the

denominator), much as regression partitioned SSTotal. That is,

SSBetween + SSError = 70.0 + 64.0 = 134.0 = (20-1)2.65568
2 = SSTotal = GG(yij - y&&G)

2

Various terms can be used to label the numerator and denominator quantities. The numerator may be

referred to as SSBetween, SSTreatment, SSModel, or by the factor name, SSMajor in the present case. The denominator

may be referred to as SSWithin or SSError, the latter being more general for different designs. These quantities are

later shown as well to be equivalent to SSRegression and SSResidual.

SPSS and the Single Factor Between-S ANOVA

Like the independent t-test, data for the single factor Between-S design requires two variables per

subject, one to indicate which group the observation belongs to and one to indicate the score on the

dependent variable. Other variables could be entered (e.g., a subject number) but are not required for

ANOVA. Here is the syntax to enter data for the present study.

DATA LIST FREE / major psypath.

BEGIN DATA

1 2   1 6   1 4   1 1   1 7 2 1   2 5   2 3   2 1   2 5

3 5   3 5   3 8   3 2   3 5 4 9   4 8   4 7   4 7   4 9

END DATA.

Several procedures in SPSS perform ANOVA, including ONEWAY, GLM, and MANOVA.

ONEWAY and GLM are available using menus or syntax, and MANOVA is available only in syntax. GLM

and MANOVA are more general than ONEWAY, which can only analyze single Between-S factor designs. If

requested, the procedures provide all the statistics necessary to calculate the ANOVA.

ONEWAY psypath BY major /STATISTICS = DESCR.

       N  Mean   Std.     
                 Deviation
                                  
 1.00  5  4.0000 2.54951
 2.00  5  3.0000 2.00000
 3.00  5  5.0000 2.12132
 4.00  5  8.0000 1.00000

 Total 20 5.0000 2.65568

                Sum of Squares df Mean Square F     Sig. 

 Between Groups 70.000         3  23.333      5.833 .007 

 Within Groups  64.000         16 4.000

 Total          134.000        19

The GLM results below contain the standard quantities computed earlier and just shown for

ONEWAY, but they also contain other quantities. First, the SS in the Total line below equals 634.0, not
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134.0, which appears on the Corrected Total line. Here GLM Total refers to the deviation of individual scores

from 0; that is, GLM attempts to account for all variability relative to 0, rather than the grand mean. The

value of 634.0 includes both variability due to the deviation of scores from the grand mean (i.e., SSTotal =

134.0) and deviations of the grand mean from 0 (i.e., the other 500.0 units). The variability due to the grand

mean is shown on the Intercept line and is calculated by: SSGrandMean = N×(y&G - 0)2 = 20×(5.0 - 0)2 = 500.0.

GLM psypath BY major /PRINT = DESCR /PLOT = PROFILE(major).

 major Mean   Std. Deviation N  
 1.00  4.0000 2.54951        5  
 2.00  3.0000 2.00000        5  
 3.00  5.0000 2.12132        5  
 4.00  8.0000 1.00000        5  
 Total 5.0000 2.65568        20 

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares                                     
 Corrected Model 70.000(a)       3  23.333      5.833   .007 

 Intercept       500.000         1  500.000     125.000 .000 = N(y&&G - 0)
2

 major           70.000          3  23.333      5.833   .007 
 Error           64.000          16 4.000

 Total           634.000         20 = G(y - 0)2 = 500.0 + 134.0

 Corrected Total 134.000         19 = ANOVA SSTotal

a R Squared = .522 (Adjusted R Squared = .433) = η2 (eta2) = SSMajor/SSTotal

The other extra line is the Corrected Model line, which here is the same as the line for Major, the

independent variable. The Corrected Model line in GLM (and the Model line in MANOVA) represent the

overall effect of all factors in the design; that is, individual effects are added together. In the single-factor

design, Model and factor lines are redundant.

The MANOVA command is similar to GLM except that the lowest and highest levels of the factor

must follow the factor name; these values are usually 1 and k.

MANOVA psypath BY major(1 4) /PRINT = CELL.

      FACTOR           CODE    Mean  Std. Dev.    N
  major                  1     4.000      2.550   5
  major                  2     3.000      2.000   5
  major                  3     5.000      2.121   5
  major                  4     8.000      1.000   5

 For entire sample             5.000      2.656  20
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Figure 1-1. Plot of group means.

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              64.00      16      4.00
 major                     70.00       3     23.33      5.83      .007
 (Model)                   70.00       3     23.33      5.83      .007
 (Total)                  134.00      19      7.05
 R-Squared =           .522  Adjusted R-Squared =  .433

The /PLOT = PROFILE(major) command in the preceding

GLM produced the basic graph in Figure 1-1, which was then edited

in SPSS’s Chart Editor. Later follow-up analyses will permit more

precise conclusions, but the graph and means in previous output

indicate that the highest average psychopathy score was obtained for

the Business students, as predicted by Hare’s hypothesis and prior

findings. Specifically, the mean for the five business students is

higher than the means for each of the other three groups. Although

H0 that the population means are equal is rejected, the overall (i.e.,

omnibus) ANOVA does not permit conclusions about differences

between specific pairs of means or between means grouped in various ways. These issues are addressed by

follow-up analyses in the next two chapters.

Using SPSS to Compute SSs for ANOVA

SPSS can calculate intermediate quantities required for the Between-S ANOVA. GLM is particularly

helpful in this regard as it can vary what factor(s) are included in the analysis and save predicted and residual

scores. The following variables created by GLM correspond to different values reported in the GLM output

(e.g., cortot = GLM Corrected Total). Actual ANOVA results are not shown, as the purpose of the ANOVAs

is solely to create these new variables.

The first GLM, which specifies no factor in the analysis, generates the Grand Mean as the predicted

value for every subject (grandmean) and the deviation of individual scores from the grand mean (cortot).

Deviations from the Grand Mean could also be created using COMPUTE.

The second GLM includes the major factor and generates Group Means as predicted scores

(groupmean) and deviations of the scores from the Group Means as residuals (error).

The subsequent COMPUTE statements generate the deviation of each score from 0 (glmtot), the

deviation of the Grand Mean from 0 (glmint for intercept), and the deviation of the Group Mean for each

Major from the Grand Mean (glmmaj). These values are listed, squared in subsequent COMPUTE statements,

and finally summed using the DESCRIPTIVE command.
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Box 1-4. Partitioning SSTotal

GLM psypath /SAVE = PRED(grandmean) RESI(cortot).

...

GLM psypath BY major /SAVE = PRED(groupmean) RESI(error).

...

VARIABLE LABEL grandmean '' cortot '' groupmean '' error ''.

COMPUTE glmtot = psypath - 0.

COMPUTE glmint = grandmean - 0.

COMPUTE glmmaj = groupmean - grandmean.

LIST.

y    y&&G         y- y&&G     y&&j     y-y&&j y-0    y&&G-0    y&&j- y&&G

  major psypath grandmean  cortot groupmean   error  glmtot  glmint  glmmaj
 1.0000  2.0000   5.0000  -3.0000   4.0000  -2.0000  2.0000  5.0000 -1.0000
 1.0000  6.0000   5.0000   1.0000   4.0000   2.0000  6.0000  5.0000 -1.0000
 1.0000  4.0000   5.0000  -1.0000   4.0000    .0000  4.0000  5.0000 -1.0000
 1.0000  1.0000   5.0000  -4.0000   4.0000  -3.0000  1.0000  5.0000 -1.0000
 1.0000  7.0000   5.0000   2.0000   4.0000   3.0000  7.0000  5.0000 -1.0000
 2.0000  1.0000   5.0000  -4.0000   3.0000  -2.0000  1.0000  5.0000 -2.0000
 2.0000  5.0000   5.0000    .0000   3.0000   2.0000  5.0000  5.0000 -2.0000
 2.0000  3.0000   5.0000  -2.0000   3.0000    .0000  3.0000  5.0000 -2.0000
 2.0000  1.0000   5.0000  -4.0000   3.0000  -2.0000  1.0000  5.0000 -2.0000
 2.0000  5.0000   5.0000    .0000   3.0000   2.0000  5.0000  5.0000 -2.0000
 3.0000  5.0000   5.0000    .0000   5.0000    .0000  5.0000  5.0000   .0000
 3.0000  5.0000   5.0000    .0000   5.0000    .0000  5.0000  5.0000   .0000
 3.0000  8.0000   5.0000   3.0000   5.0000   3.0000  8.0000  5.0000   .0000
 3.0000  2.0000   5.0000  -3.0000   5.0000  -3.0000  2.0000  5.0000   .0000
 3.0000  5.0000   5.0000    .0000   5.0000    .0000  5.0000  5.0000   .0000
 4.0000  9.0000   5.0000   4.0000   8.0000   1.0000  9.0000  5.0000  3.0000
 4.0000  8.0000   5.0000   3.0000   8.0000    .0000  8.0000  5.0000  3.0000
 4.0000  7.0000   5.0000   2.0000   8.0000  -1.0000  7.0000  5.0000  3.0000
 4.0000  7.0000   5.0000   2.0000   8.0000  -1.0000  7.0000  5.0000  3.0000
 4.0000  9.0000   5.0000   4.0000   8.0000   1.0000  9.0000  5.0000  3.0000

*square the quantities.

COMPUTE glmtot2 = glmtot**2.

COMPUTE glmint2 = glmint**2.

COMPUTE cortot2 = cortot**2.

COMPUTE glmmaj2 = glmmaj**2.

COMPUTE error2  = error**2.

DESCR glmtot2 glmint2 cortot2 glmmaj2 error2 /STAT = SUM.

                 N  Sum      

 glmtot2         20 634.0000 deviation of scores from 0

 glmint2         20 500.0000 deviation of Grand Mean from 0

 cortot2         20 134.0000 deviation of scores from Grand Mean

 glmmaj2         20 70.0000  deviation of Group Means from Grand Mean

 error2          20 64.0000  deviation of scores from Group Means

Alternatively, we could get descriptive statistics for the computed variables before they are squared,

and use (n-1)s2 to obtain SSs. Given the following statistics, for example, SSMajor = (20-1)1.919432 = 70.00.

DESCR glmtot glmmaj error.

N Mean Std. Deviation
glmtot 20 5 2.65568

glmmaj 20 .0000 1.91943
error 20 .0000 1.83533

The final glmmaj column demonstrates why the deviations of group

means from the grand mean were multiplied by the number of observations in
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each group. In essence, the deviation of each score from the grand mean consists of two parts: the deviation

of the score from the group mean and the deviation of the group mean from the grand mean, as shown

algebraically in Box 1-4. Squaring and summing the three parts of this equation gives the formula for the

single factor Between-S design shown previously and in Appendix 1-1. The last formula on line four is eta2

and estimates the strength of the relationship. It is equivalent to R2 in the preceding analyses.

© James M. Clark 2024



Analysis of Variance 1.10

APPENDIX 1-1: FORMULA FOR SINGLE FACTOR BETWEEN-S ANOVA
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CHAPTER 2 - POST HOC COMPARISONS FOR SINGLE FACTOR B-S DESIGNS

Omnibus ANOVAs that reject the null hypothesis and accept the alternative are ambiguous given

more than two levels for the independent variable or factor because the omnibus F does not indicate which

groups differ significantly. Moreover, even when the null hypothesis is not rejected, specific differences

between groups could be significant by more focussed tests. Because of these limitations, the omnibus F is

generally followed by multiple comparison tests to examine specific differences between groups. Follow-up

analyses are of two sorts, post hoc (a posteriori) comparisons and planned (a priori) comparisons. The

distinction is somewhat analogous to nondirectional and directional tests of significance.

Specifically, post hoc comparisons are conducted when researchers do not predict how groups will

differ. In this case, multiple comparisons are performed without any prior expectations. The post hoc tests

presented here perform all possible pairwise comparisons, although other post hoc tests can involve more

complex comparisons (e.g., average of groups 1 and 2 versus average of groups 3 and 4). The number of

pairwise comparisons (denoted c) is equal to k(k-1)/2. For example, c = 4(4-1)/2 = 6 pairwise comparisons

for four groups: 12, 13, 14, 23, 24, 34. For k = 5, c = 5(5-1)/2 = 10 comparisons: 12, 13, 14, 15, 23, 24, 25,

34, 35, 45. Post hoc comparisons require that the omnibus F test be significant, which indicates that there is

significant variability in the means. Most post hoc tests also require an adjustment for the fact that multiple

comparisons are being made.

Planned or a priori comparisons are appropriate when researchers predict what pattern is expected

prior to seeing the results (e.g., performance better for certain groups, scores will improve or deteriorate

across levels of the factor). Because planned comparisons are predicted and usually involve fewer tests than

post hoc procedures, the omnibus F need not be significant before carrying out planned comparisons and

(arguably) little or no adjustment is required for the multiple tests being conducted. A case could even be

made that the omnibus F does not need to be done given a priori comparisons.

This chapter covers four post hoc procedures: Least-Significant Difference (LSD), Student-Newman-

Keuls (SNK), Tukey, and Bonferroni. These tests are ordered from a liberal test (LSD) that makes little or no

adjustment for the multiple comparisons to a conservative test (Bonferroni) that involves a substantial

adjustment. SNK and Tukey fall between LSD and Bonferroni tests. Rejecting the null for each comparison

is easier for liberal tests, and more difficult for conservative tests.

Adjustments are generally recommended for multiple comparisons because the greater the number of

statistical comparisons, the greater the likelihood that one or more comparison is significant by chance,

resulting in a Type I error (i.e., rejection of a true null hypothesis). The probability of one or more Type I

errors as a function of number of tests is 1 minus the probability of 0 Type I errors = 1 - (1 - α)c, where c =
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Box 2-1. T-test

formula

Box 2-2. Calculation of t

the number of comparisons and α is the probability of a Type I error for a single test. With four groups and α

= .05, p(one or more Type I errors) = 1 - (1 - .05)6 = 1 - .735 = .265, much higher than the probability of a

Type I error for a single test. Adjusting for the number of comparisons (i.e., making it more difficult to reject

H0) reduces this overall error rate (sometimes called the Experimentwise error rate) and maintains a more

acceptable probability of a Type I error. For a single test with two groups, c = 1 and 1 - (1 - α)c = α.

LSD and Bonferroni Tests

One exception to adjusting for multiple comparisons is the LSD test, which is

essentially an unadjusted set of t-tests. The only protection against Type I errors is the

fact that the omnibus F test must be significant, giving a statistical reason to believe

that the H0 is false. The formula for calculation of the t-tests is shown in Box 2-1 and

differs just slightly from the independent t-test between two groups.

The primary difference is that tLSD uses MSE from the omnibus ANOVA rather than sp
2 based on

variability in just the two groups being compared. Using data for all groups provides a better estimate of the

population variance. This also means that dfLSD = N - k, rather than n1 + n2 - 2 for the standard t-test, and that

the denominator for all comparisons (i.e., the standard error of the difference between means) will be the

same when nj is the same for all groups. The use of j and j’ as subscripts for the group means and nj

represents the fact that multiple ts will be calculated involving different groups (e.g., j = 1 and j’ = 2, j = 1

and j’ = 3, and so on). Here is the omnibus ANOVA for the psychopathy study.

ONEWAY psypath BY major /STATISTICS = DESCR.

       N  Mean   Std.      Std.   
                 Deviation Error  
                                  
 1.00  5  4.0000 2.54951   1.14018
 2.00  5  3.0000 2.00000   .89443 
 3.00  5  5.0000 2.12132   .94868 
 4.00  5  8.0000 1.00000   .44721 

 Total 20 5.0000 2.65568   .59383 

                Sum of Squares df Mean Square F     Sig. 
 Between Groups 70.000         3  23.333      5.833 .007 
 Within Groups  64.000         16 4.000
 Total          134.000        19

Box 2-2 shows calculations to compare means for groups 1 and 2.

Other ts would be calculated in the same way with SE = 1.265. Given multiple

t-tests, it helps to lay out post hoc results in a table as follows. Order means

from low to high and arrange as rows and columns. Each cell above the

diagonal (indicated by --- below) involves a comparison between two groups; here there are six cells, equal
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to the number of pairwise comparisons. Cells below the diagonal are redundant and are ignored. Compute

the ts and enter them as positive values in the appropriate cells. Column means minus row means will always

be positive.

Results of t Calculations

Group 2 1 3 4

y&&j 3.0 4.0 5.0 8.0

2 3.0 ---   .79 1.58 3.95LB LSD tCritical = 2.120

1 4.0 ---   .79 3.16LB Bonf tCritical = 3.008

3 5.0 --- 2.37L

4 8.0 ---

Arranging post hoc tests in this manner ensures that all pairwise comparisons are calculated exactly

once and also provides a calculation check in that the largest t will be in the upper right cell and ts become

smaller moving left on the rows or down the columns. Ordered means also allows a concise summary of the

results, as shown below. Another advantage discussed later is that the layout facilitates comparing observed

statistics with critical values for the SNK test.

With df = 16, α = .05, and a nondirectional test because researchers do not have expectations for post

hoc tests, tCritical = 2.120. This means that group 4 differs significantly from each of the other three groups,

which do not differ significantly from one another. The superscript L in the above table indicates which

comparisons are significant by the LSD procedure.

Summarizing the results of post hoc tests can be complicated, especially when numerous groups are

involved. One way to communicate the results is to group means that do not differ significantly from one

another as a set. Here, for example, means for groups 2, 1, and 3 are not significantly different from one

another; that is, comparisons 21, 23, and 13 are all not significant. They constitute one set of three means.

Means for these three groups are all significantly different from the mean for group 4, which constitutes a

separate set by itself. To summarize, list the means according to size on a line and underline those that are

not significantly different from one another, as follows. Means must be ordered from small to large for this

to work. SPSS does this for some post hoc tests, but in a slightly different way.

     LSD Results

Group 2 1 3 4

y&&j 3.0 4.0 5.0 8.0

----------------------

Sometimes, a mean belongs to more than one set, as seen shortly for the Bonferroni procedure. For

example, if groups 3 and 4 were not significantly different in the present study, then group 3 would belong to
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two sets: 213 and 34.

Although it may occasionally be legitimate to use the post-hoc LSD procedure, it makes no

adjustment for multiple comparisons and is prone to inflated Type I errors. A very conservative method is

the Bonferroni test. For Bonferroni, ts are tested for significance using α/c, where c is the number of

comparisons. With 4 groups (i.e., 6 comparisons), the probability for each t must be less than .05/6 = .00833

before being called significant, using α=.05. Requiring a smaller p value for significance makes it more

difficult to reject H0, which reduces the probability of a Type I error. Note that 1-(1-.00833)6 . .05.

One challenge with Bonferroni is that tables of significance for t can only report a few discrete values

for the area or probability (i.e., .10, .05, .025, and so on), rather than more specific values like .00833. On-

line calculators and SPSS can compute critical values of t for any specified area; see Appendix 2-1, which

includes an SPSS procedure to calculate observed p values for the Bonferroni test. The commands there

show that the critical value of t for Bonferroni with 6 means is 3.008, considerably larger than the critical

value for LSD. Bonferroni is more conservative in the sense that it is more difficult to reject the null

hypothesis of no difference between the means. Making it more difficult to reject H0 reduces the probability

of rejecting a true H0, that is, making a Type I error.

Some differences may be significant by the LSD test but not by Bonferroni. As shown in the table of

observed ts above, only two differences represented by the subscript B are significant for Bonferroni versus

three for LSD. An equivalent approach to the Bonferroni is in terms of p values rather than critical ts. This

approach is based on the following equality and is used by SPSS:

if pObserved < .05/c, then c × pObserved < .05

That is, given a p value for the LSD test, multiply it times c, the number of comparisons, and then

compare the resulting value to .05 (or whatever alpha is chosen). SPSS provides p values for post hoc tests,

but SPSS can also compute these p values directly, as shown in the Appendix 2-1. The p values also appear

in the SPSS output for the LSD procedure.

Obtaining post hoc results is straightforward in SPSS using either ONEWAY or GLM. The relevant

subcommands are shown below. Because there is a single factor in ONEWAY, it is only necessary to specify

the tests. GLM can have multiple factors, so users must specify what factor the post hoc tests are for. Note

the correspondences between the following results and the preceding discussion: SE = 1.265, significance

levels, p values, and Bonferroni p = 6×pLSD. For example, Bonferroni p14 = .036 = 6 times LSD p14 = .006.

When the Bonferroni adjustment produces a p > 1.000, SPSS prints 1.000 because a probability can never be

greater than 1. Although SPSS does not compute final t values, it provides numerators (Mean Difference)

and denominators (Std. Error) to compute t, if needed. Using menus to obtain these tests will show other post
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hoc tests that are available.

ONEWAY psypath BY major /RANGES = LSD BONFERRONI.

...
Post Hoc Tests
            (I)   (J)   Mean Difference Std.    Sig.
            major major (I-J)           Error
 LSD        1.00  2.00  1.00000         1.26491 .441
                  3.00  -1.00000        1.26491 .441

                  4.00  -4.00000(*)     1.26491 .006

            2.00  3.00  -2.00000        1.26491 .133

                  4.00  -5.00000(*)     1.26491 .001

            3.00  4.00  -3.00000(*)     1.26491 .031

 Bonferroni 1.00  2.00  1.00000         1.26491 1.000
                  3.00  -1.00000        1.26491 1.000

                  4.00  -4.00000(*)     1.26491 .036 t=4.0/1.26491=3.16>3.008 

            2.00  3.00  -2.00000        1.26491 .800

                  4.00  -5.00000(*)     1.26491 .007

            3.00  4.00  -3.00000        1.26491 .184
* The mean difference is significant at the .050 level.

Note below how GLM specifies the factor then lists the desired post-hoc tests. The GLM commands

produce the same output as ONEWAY, but can also be used in factorial studies with more than one factor.

GLM psypath BY major /POSTHOC = major(LSD BONF).

...
Post Hoc Tests
            (I)   (J)   Mean Difference Std.    Sig.
            major major (I-J)           Error       
 LSD        1.00  2.00  1.0000          1.26491 .441
                  3.00  -1.0000         1.26491 .441
                  4.00  -4.0000(*)      1.26491 .006
...(same as ONEWAY results)

Summarizing the Bonferroni results must consider that four comparisons are not significantly

different, 21 23 13 34, and two comparisons are significant, 24 14, a total of six comparisons. Specifically,

group 3 must be included in two sets of means that are not significantly different, one set including 3 with 1

and 2, and the other set including 3 with 4. Here is the summary.

   Bonferroni Results

Group 2 1 3 4

y&&j 3.0 4.0 5.0 8.0

----------------------

--------------

The q (or Range) Statistic

The Bonferroni test may be too conservative and reduce the probability of a

Type I error so much that it inflates the probability of a Type II error excessively. Two

procedures that fall between the LSD and Bonferroni tests are SNK (Student-Neuman-

Keuls) and Tukey. Traditionally, the SNK and Tukey tests use the q or Range statistic

shown in Box 2-3. Note that the denominators differ for q and t; specifically, the denominator for q is

Box 2-3. Q-statistic
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Figure 2-1. Simulation of Range Statistic

smaller, resulting in a larger value for q than for t. Therefore, the q statistic cannot be compared to critical

values of t; rather it has its own table of critical values (see supplementary tables).

The sampling distribution (i.e., critical values for q) was obtained by randomly selecting k samples

from a single population, where k is the number of samples selected, and calculating critical values for q

with the formula in Box 2-3. The reasoning is that a larger k can elicit a larger y&&Largest - y&&Smallest (the numerator

for q) by chance. A difference is much more likely to be large with k = 7 than with k = 3, for example. 

Figure 2-1 shows a simulation similar to how the

Studentized Range statistic was initially calculated. From 2 to 8

samples of five observations were selected 10,000 times from

the identical population and the difference between the largest

and smallest sample means was calculated. As shown, the

greater the number of samples the greater the difference

between the largest and smallest means, despite both coming

from the same population. 

To accommodate this issue, the table for q includes a value called the Stretch, which represents the

number of groups spanned by any particular comparison when group means are ordered from lowest to

highest, including the two groups being compared. Comparing the largest and smallest means for only two

groups, the span would be 2; comparing the largest and smallest means for three groups, the span would be

3; and so on.

Critical values of q become larger as Stretch increases so that the critical value to reject the null

hypothesis increases as the chance probability of a large difference increases. With df = 16 and a = .05, qCritical

= 3.00, 3.65, 4.05, and 4.33 for stretches 2 to 5, respectively. To carry out the SNK and Tukey post hoc tests,

which differ in terms of how stretch is defined, q is calculated using the formula in Box 2-4 (the left formula

is used when njs are equal and the middle formula when njs differ across samples).

The denominator of the middle version makes clear that

the formulas for q and t differ because MSE is divided by 2 for

q, which means that q will be %2 times t. Equivalently, t will

equal q/%2. Given this relationship, when Stretch = 2, the

critical value of q (3.00) is %2 times greater than the critical value for t (2.12); that is, tCritical × %2 = 2.12 × %2

= 2.998 .3.00 = qCritical. Given the relationship between observed and critical values of t and q when stretch =

2, the q test with stretch = 2 is equivalent to a t-test. As stretch increases, the test becomes more

conservative.

Box 2-4. Calculation of q statistic
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With equal njs in the psychopathy study, the denominator for all the qs will be SQRT{4.0(1/5)} =

.894 (which equals 1.265/%2, where 1.265 is the denominator calculated earlier for t). For group 2 versus

group 1, q = (4.0-3.0)/.894 = 1.12 = .79 ×%2. The remaining qs appear in the following table.

Results of q Calculations
Group 2 1 3 4

Mj 3.0 4.0 5.0 8.0
2 3.0 . 1.12 2.24 5.59LBT

1 4.0 . 1.12 4.47LBT

3 5.0 . 3.36L

4 8.0 .

For df = 16, a = .05, and stretch = 2, qCritical = 3.00, leading to the same result as the LSD test using t;

that is, group 4 differs from groups 1, 2, and 3, which do not differ from one another. This is expected since

the two tests are equivalent.

For the SNK and Tukey tests, the stretch used is generally greater than 2, leading to larger critical

value for q and making the tests more conservative than LSD. The Tukey test uses Stretch = k, the number of

groups. Hence, qTukeyCritical = 4.05 when k = 4, which means that group 4 differs significantly from 2 and 1, but

other differences are not significant, including that between groups 4 and 3. This is identical to the

Bonferroni conclusion and is reflected in the superscript Ts in the above table.

Even the Tukey procedure may be too conservative because it uses k as the stretch for all

comparisons. But when k means are ordered from smallest to largest, only the comparison between the most

extreme means corresponds to Stretch = k. In the psychopathy study, for example, only the comparison

between group 2 (lowest y&&j) and group 4 (highest y&&j) actually includes or spans all four groups, as shown

below. For other comparisons, Stretch = k is too large.

2 1 3 4 Stretch Comparison

----------------------------- 4 2 versus 4

Two comparisons span only three groups:

2 1 3 4

-------------------- 3 2 versus 3

-------------------- 3 1 versus 4

Three comparisons span only two groups:

2 1 3 4

----------- 2 2 versus 1

----------- 2 1 versus 3

----------- 2 3 versus 4
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The stretch for each cell is indicated below by a superscript. The three critical values are shown to the

right of the observed qs. Comparing the observed and appropriate critical values indicates that, for the SNK

tests, group 4 differs significantly from groups 2, 1, and 3, which do not differ significantly from one

another. This duplicates the results for the LSD procedure and would be summarized in the same way.

Group 2 1 3 4
y&&j 3.0 4.0 5.0 8.0 Str qSNKCritical

2 3.0 . 1.122 2.243 5.594SNK 4 4.05

1 4.0 . 1.122 4.473SNK 3 3.65

3 5.0 . 3.362SNK 2 3.00

4 8.0 .

Laying out the cells as we did simplifies comparisons between observed qs and SNK critical values.

The top right cell will have a stretch of k, 4 in this study as shown by the superscript for that cell. The cells

immediately to the left and below will have a stretch of k-1, 3 in the present case and identified by the

superscript 3. This continues moving down and left until reaching the cells just above the diagonal, which

have a stretch of 2 as indicated by the superscript 2. Or one can think of starting at the diagonal with a stretch

of 2 and moving diagonally until reaching the top right cell with a stretch of k.

Because SNK uses different critical values, paradoxical outcomes are possible in that a smaller

difference might be significant and a larger difference not significant. Imagine, for example, that the

comparison between groups 4 and 1 produced qObserved = 3.50 rather than 4.47. This value would not be

significant compared to qCritical = 3.65 whereas the smaller difference between group 4 and group 3 (qObserved =

3.36) would be significant because of its lower qCritical = 3.00. To avoid such anomalies, comparisons start

with the largest difference (i.e., largest stretch and q) in the top right corner, working left across the row, and

stopping for that row as soon as a difference is not significant. All comparisons to the left are considered not

significant. Then the next row down would be examined in the same manner starting at the far right, but only

if the cell above is significant. Using this procedure, cells to the left or below a non-significant cell are not

significant. This procedure works when comparisons are arranged with rows and columns ordered from

lowest to highest y&&j. Statistical packages, such as SPSS, incorporate this precaution into the SNK test.

All four post hoc procedures are shown below for GLM; the output would be the same for

ONEWAY. The Tukey results have been added to the pairwise comparison section of the output, showing

that comparisons 14 and 24 are significant. The SNK results are not shown in the pairwise comparison

section because of possible paradoxical results. Instead, the SNK results, along with the Tukey results,

appear in a new section of output labelled Homogeneous Subsets. This section is similar to the underlining

procedure used to assign groups to sets that do not differ significantly from one another. The four groups
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have been ordered from low to high according to y&&j and means that do not differ significantly appear in

separate columns to the right. The SNK result corresponds to the underlining for the LSD procedure and the

Tukey result corresponds to the underlining for the Bonferroni procedure because SNK and LSD produced

identical conclusions as did Tukey and Bonferroni. The p values below each column show the most

significant difference within the group; for example, p = .416 below Subset 1 for the Tukey test corresponds

to the 23 comparison.

GLM psypath BY major /POSTHOC = major(LSD SNK TUKEY BONF).

...
Post Hoc Tests
            (I)   (J)   Mean Difference Std.    Sig. 
            major major (I-J)           Error        
 LSD        1.00  2.00  1.0000          1.26491 .441 
                  3.00  -1.0000         1.26491 .441 
                  4.00  -4.0000(*)      1.26491 .006 

            2.00  3.00  -2.0000         1.26491 .133 Redundant lines deleted

                  4.00  -5.0000(*)      1.26491 .001 e.g.,2 vs 1, 3 vs 2
            3.00  4.00  -3.0000(*)      1.26491 .031 

 Tukey HSD  1.00  2.00  1.0000          1.26491 .858 
                  3.00  -1.0000         1.26491 .858 
                  4.00  -4.0000(*)      1.26491 .028 
            2.00  3.00  -2.0000         1.26491 .416 
                  4.00  -5.0000(*)      1.26491 .006 
            3.00  4.00  -3.0000         1.26491 .123 

 Bonferroni 1.00  2.00  1.0000          1.26491 1.000
                  3.00  -1.0000         1.26491 1.000

                  4.00  -4.0000(*)      1.26491 .036 = 6×.006
            2.00  3.00  -2.0000         1.26491 .800 
                  4.00  -5.0000(*)      1.26491 .007 
            3.00  4.00  -3.0000         1.26491 .184 

Homogeneous Subsets
                 major N Subset        
                         1      2      
 Student-Newman- 2.00  5 3.0000        

 Keuls(a,b,c)    1.00  5 4.0000 Equivalent to: 2 1 3 4
                 3.00  5 5.0000    -----
                 4.00  5        8.0000
                 Sig.    .282   1.000  

 Tukey           2.00  5 3.0000 

 HSD(a,b,c)      1.00  5 4.0000 Equivalent to: 2 1 3 4
                 3.00  5 5.0000 5.0000 -----
                 4.00  5        8.0000     ---
                 Sig.    .416   .123

To fully appreciate that the four tests from most liberal to most conservative are ordered LSD, SNK,

Tukey, and Bonferroni, it helps to compare p values for each comparison across tests. Most ps can be

extracted from the preceding tables, or SPSS can be used to generate them, as shown below (see Appendix

2-1). PLSD to PBON contain the p values and agree with those from the preceding analyses.
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Figure 2-2. Post Hoc Menu for GLM.

DATA LIST FREE /comp str tobs.

BEGIN DATA

12  2 .79 23 3 1.58 24 4 3.95 13 2  .79 14 3 3.16 34 2 2.37

END DATA.

COMP df = 16.

COMP c = 6.

COMP qobs = tobs*sqrt(2).

COMP plsd = 1 - CDF.SRANGE(qobs, 2, df).

COMP psnk = 1 - CDF.SRANGE(qobs, str, df).

COMP ptuk = 1 - CDF.SRANGE(qobs, 4, df).

COMP pbon = c*(1 - CDF.SRANGE(qobs, 2, df)).

FORMAT comp str df (F2.0) tobs qobs plsd psnk ptuk pbon (F6.4).

SORT CASES BY comp.

LIST.

comp str   tobs df   qobs   plsd   psnk   ptuk   pbon

 12    2  .7900 16 1.1172  .4411  .4411  .8579 2.6465 LSD = SNK, str = 2

 13    2  .7900 16 1.1172  .4411  .4411  .8579 2.6465 LSD = SNK, str = 2

 14    3 3.1600 16 4.4689  .0061  .0158  .0279  .0364 pLSD < pSNK < pTukey < pBonferroni

 23    3 1.5800 16 2.2345  .1337  .2825  .4168  .8020 pLSD < pSNK < pTukey < pBonferroni

 24    4 3.9500 16 5.5861  .0011  .0057  .0057  .0069 SNK = TUK, str = k

 34    2 2.3700 16 3.3517  .0307  .0307  .1236  .1842 LSD = SNK, str = 2

Note that p values become larger (with some exceptions noted above) from PLSD to PBON,

indicating that the comparisons become less significant, hence less likely to reject the null hypothesis and

make a Type I error. Comparisons 14 and 23 show the increased conservatism best because no tests are

equivalent. In general, LSD is more liberal than SNK, which is more liberal than Tukey, which is more

liberal than Bonferroni, the most conservative test. Some p values are equal when stretches for the tests and

hence the critical values are equal.

Post hoc comparisons are one of the more

complex areas of statistics, largely because there are so

many procedures (illustrated by options in the GLM

post hoc menu in Figure 2-2). Essentially, researchers

must decide about the cost of making a Type I error

and hence how conservative to be for a particular

study. For example, if the consequence of rejecting H0

is costly or has other important implications,

researchers should be more conservative. If the

consequences of rejecting H0 are minor or not very

serious, then a more liberal test would be appropriate.

The results of post hoc procedures can produce

anomalous (i.e., “messy”) results as illustrated above
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for the Tukey and Bonferroni procedures. Specifically, 2=1=3 and 3=4, but 2…4 and 1…4. The results for

LSD and SNK, on the other hand, lend themselves better to a more interpretable result. Specifically, 2=1=3

and 2…4, 1…4, and 3…4, the Business students score higher than the three other Majors. Interpretable

statistical results are more likely given well-founded predictions about the expected results and conducting

planned or a priori tests, as discussed in chapter 3.
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APPENDIX 2-1: USING SPSS TO CALCULATE CRITICAL TS AND P VALUES

The following commands compute the critical value of t using a Bonferroni value for alpha. The

calculation of the critical value for LSD is also illustrated to show that it corresponds to the tabled value. The

essential difference between the two computes is that .05 (equivalently .025 in each tail) is divided by c = 6

to obtain the critical t for Bonferroni, which is 3.0083. Changing the values for df and c in the data line

would produce critical values for any study involving post hoc comparisons.

*critical values of t for LSD and Bonf.

*   df = 16, alpha = .05, nondir, c = #comp = 6.

DATA LIST FREE / df c.

BEGIN DATA

16 6

END DATA.

COMP tlsd  = IDF.T(1 - (.05/2), df).

COMP tbonf = IDF.T(1 - (.05/2)/c, df).

FORMAT df (F2.0) tlsd (F6.4) tbonf (F6.4).

LIST.

df   tlsd  tbonf

16 2.1199 3.0083

The following commands take a second approach and multiple the observed p value by the number of

comparisons, 6 in this case. The resulting p can be compared to .05. The conclusions are the same

irrespective of which approach is taken.

*p values for LSD and Bonf, df = 16, #comp = 6.

DATA LIST FREE /comp tobs.

BEGIN DATA

12  .79 23 1.58 24 3.95

13  .79 14 3.16

34 2.37

END DATA.

COMP df = 16.

COMP c = 6.

COMP plsd = 2*(1 - CDF.T(tobs, df)).

COMP pbon = c*(2*(1 - CDF.T(tobs, df))). could have been 6*plsd

FORMAT comp df (F2.0) plsd pbon (F6.4).

SORT CASES BY comp.

LIST comp tobs df plsd pbon.

comp   tobs df   plsd   pbon LSD Bonferroni

 12     .79 16  .4411 2.6465 ns ns pbon>1

 13     .79 16  .4411 2.6465 ns ns pbon>1

 14    3.16 16  .0061  .0364 sig sig

 23    1.58 16  .1337  .8020 ns ns

 24    3.95 16  .0011  .0069 sig sig

 34    2.37 16  .0307  .1842 sig ns
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CHAPTER 3 - PLANNED COMPARISONS AND REGRESSION ANALYSES

FOR SINGLE FACTOR BETWEEN-S DESIGNS

Post hoc tests are used when there are no expectations or predictions about the outcome of a study,

but they do not always lead to tidy conclusions. In the psychopathy study, for example, the Tukey and

Bonferroni tests conclude that groups 2, 1, and 3 did not differ from one another, that groups 3 and 4 did not

differ, but groups 2 and 1 differed from group 4. The fact that group 3 is not significantly different from 2

and 1 or from 4 creates a problem for coming to a neat conclusion. In contrast, the LSD and SNK procedures

in that particular study did lead to the tidy conclusion that the business students in group 4 obtained

significantly higher psychopathy scores than all three groups from other faculties, which did not differ from

one another.

A better approach for most studies (i.e., more likely to produce an interpretable pattern) is to make

predictions about the expected results and perform tests or contrasts that correspond to those expectations,

assuming the predictions are correct. An added benefit of such planned comparisons (called contrasts) is that

the omnibus F need not be significant to carry out these follow-up analyses, a benefit because the omnibus F

can be non-significant even when specific contrasts are significant. This can occur because SSBetween is

divided by k - 1 in the omnibus analysis even though most of the variability in SSBetween could be due to just

one comparison (i.e., df = 1).

There are also costs and risks associated with planned comparisons, however. One cost is that

researchers usually restrict the number of tests to fewer comparisons than with post hoc procedures; one

guideline for “fewer” is to limit the number of comparisons to the df for the factor (i.e., number of

comparisons is c = k - 1). A second risk is that the predictions might be wrong, leading to analyses that do

not in fact correspond well to the observed data. The availability of prior studies and well-founded theories

determine how great that risk is. But science does often benefit from rejected hypotheses and theories!

Planned comparisons make use of contrasts (also called linear contrasts), which essentially are k

coefficients (numbers), one for each of the k groups. These coefficients (denoted by cj = c1, c2, ... ck) test the

significance of patterns expected in the data and must sum to 0. With k = 4, the following are some possible

patterns (labels in the left column are explained shortly):
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Group c1 c2 c3 c4 'cj

C12v34 -1 -1 +1 +1 0

Clinear -3 -1 +1 +3 0

Cnonlinear -1 +1 +1 -1 0

C123v4 -1 -1 -1 +3 0

C12v3 -1 -1 +2 0 0

C1v2 -1 +1 0 0 0

Contrast analyses essentially tests whether these predicted patterns correlate strongly enough with the

observed cell means to reject the null hypothesis of no relationship. Some contrasts can be interpreted as

differences between y&&js as in C12v34, C123v4, C12v3, and C1v2 above. Specifically, y&&js for groups with

negative numbers are being contrasted with y&&js for groups with positive numbers. For example, C123v4 tests

whether the average for groups 1, 2, and 3 differs significantly from the average for group 4. Other contrasts

define more complex patterns or differences. For example, the coefficients for Clinear increase in a linear

fashion from group 1 to group 4. A systematic increase or decrease in means would correlate positively or

negatively with these coefficients. Cnonlinear defines a curvilinear or nonlinear pattern.  Means that showed a U

shaped or inverted U shape pattern would correlate with the Cnonlinear coefficients. Whether the correlation is

positive or negative is incidental to the statistical test, although critical for interpretation of the results.

A common practice is to limit tests to k - 1 contrasts with the added restriction that contrasts are

orthogonal to one another; orthogonal means independent or uncorrelated. Specifically, two sets of contrast

coefficients, cj and cj
’, are orthogonal if 'cjcj’ = 0, that is, if the cross products of the coefficients sum to 0.

The lack of correlation given this condition occurs because SCP = 0 if 'cjcj’ = 0 for contrasts (the

computational formula for SCP = Gxy - (GxGy)/n and for contrasts Gx = 0 and Gy = 0). The test of

orthogonality is illustrated below for several pairs shown above.

'cjcj’

C12v34 -1 -1 +1 +1

Clinear -3 -1 +1 +3

C12v34 × Clinear +3 + +1 + +1 + +3 = 8 NOT orthogonal

Clinear -3 -1 +1 +3

Cnonlinear -1 +1 +1 -1

Clinear × Cnonlinear +3 + -1 + +1 + -3 0 Orthogonal

C123v4 -1 -1 -1 +3

C12v3 -1 -1 +2 0 0 Orthogonal
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C12v3 -1 -1 +2 0

C1v2 -1 +1 0 0 0 Orthogonal

C123v4 -1 -1 -1 +3

C1v2 -1 +1 0 0 0 Orthogonal

Summing the products of contrast coefficients determines whether they are orthogonal. The

challenge, however, is generating k - 1 orthogonal contrasts, although some common patterns emerge with

practice. The third pair, for example, is orthogonal because C12v3 compares groups 1 and 2 with 3, and these

three groups were all coded -1 (i.e., the same) in the preceding contrast, C123v4. Therefore, C123v4 did not

capture any variability in the means for groups 1, 2, and 3.

Three of the above contrasts are mutually orthogonal and correspond to meaningful comparisons for

the psychopathy study. C123v4 compares the mean for groups 1, 2, and 3 with the mean for business students

(i.e., the group predicted to score higher on psychopathy). This is the primary prediction. C12v3 compares

humanities and social science students with natural science students, and C1v2 compares humanities students

with social science students. These latter two “hypotheses” complete the required k - 1 orthogonal contrasts,

but may be of less theoretical interest than C123v4. In many studies only some of the k-1 contrasts are of

interest.

Given k-1 contrasts, the next step is to calculate a contrast

score (L) for each contrast. As shown in Box 3-1, L is the sum of

the cross products of the contrast coefficients and corresponding

means. L represents the “correlation” between the contrast

coefficients and the means, and can be tested for significance

using a t test or an equivalent F test. Box 3-1 shows relevant

formula, where MSE is MSError from the omnibus ANOVA.

Calculations for the psychopath study appear below. 'cj
2 = -12 + -12 + -12 + 32 = 12 in denominator for SSL.

1-Hum 2-SS 3-NS 4-Bus
y&&j 4.0 3.0 5.0 8.0 L SSL

C123v4 -1 -1 -1 +3 +12.0 60.0 = 5 × 12.02 / 12

C12v3 -1 -1 +2 0 +  3.0   7.5

C1v2 -1 +1 0 0 -   1.0   2.5

'SSL =70.0 = SSMajor

To illustrate the above calculations for the first contrast, C123v4:

L = -1×4.0 + -1×3.0 + -1×5.0 + 3×8.0 = +12.0

Box 3-1. Formula for planned comparisons
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Box 3-3. Contrast tests as difference between means.

When k - 1 orthogonal contrasts are used, as

above, the sum of the SSLs equals SSBetween from the

omnibus ANOVA. SSBetween is partitioned into k - 1

components, one associated with each contrast. Each

contrast represents one df from the omnibus F. Of

particular note, most of the 70.0 units of variability loaded

on our first contrast, as predicted, whereas the omnibus

ANOVA divided 70.0 into k - 1 = 3 equal units.

` Both L and SSL can be used to test significance. The conclusions for t and F will be equivalent. Box

3-2 shows calculations for the first contrast, c123v4. The t-test (df = N - k) and F-test (df = 1, N - k) are

equivalent because dfNumerator = 1 for the F test.

Each contrast shown here

corresponds to a difference between

means and the t and F statistics just

calculated using L agree with t and F

tests studied earlier for differences

between means. Box 3-3 illustrates for

contrast C123v4. The strength of the contrast approach is that it also works for patterns (e.g., linear or

nonlinear) that do not represent simple differences between means.

Planned Contrasts in SPSS

ONEWAY, GLM, and MANOVA all provide ways to conduct planned contrasts. ONEWAY

produces results shown below. Two ts are reported, one that assumes equal variances and a second that does

not make that assumption. The first t shows various correspondences with our preceding analysis: L = Value

of Contrast, SE, t, and df. The contrast is significant, even by a nondirectional test, although planned

contrasts generally involve directional predictions. ONEWAY does not partition SSBetween.

ONEWAY psypath BY major /CONTRAST = -1 -1 -1 3.

                Sum of Squares df Mean Square F     Sig. 
 Between Groups 70.000         3  23.333      5.833 .007 
 Within Groups  64.000         16 4.000                  
 Total          134.000        19                        

                        Contrast Value of   Std. Error t     df     Sig.
                                  Contrast                          (2-tailed)

  psypath Assumes equal  1        12.0000    3.09839    3.873 16     .001

          variances

         Does not assume 1        12.0000    2.19089    5.477 14.445 .000
         equal variances

Box 3-2. Tests of significance for psychopath

study
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The following analyses illustrate features of the GLM procedure; the factor name is specified with the

/CONTRAST command, which is followed by numerical values for one or more contrasts in parentheses

after the SPECIAL option. SPSS also allows keywords for built-in contrasts described later. The first section

of output shows the significance along with values that can be used to calculate t (i.e., numerator,

denominator) but not the actual t. The following ANOVA summary table includes SSL, FL, and significance.

The t and F agree with earlier calculations and correspond to one another; ps are equal and F = t2.

GLM psypath BY major /CONTRAST(major) = SPECIAL(-1 -1 -1 3).

...
Custom Hypothesis Tests
 major Special                             Dependent
 Contrast                                  Variable
                                           psypath

 L1            Contrast Estimate           12.000      t = 12.0/3.098 = 3.873

               Hypothesized Value          0
               Std. Error                  3.098
               Sig.                        .001

 Source   Sum of Squares df Mean Square F      Sig.

 Contrast 60.000         1  60.000      15.000 .001 F = t2

 Error    64.000         16 4.000

The next analysis shows SPECIAL followed by k - 1 = 3 sets of k coefficients that correspond to the

three contrasts. GLM produces results for three tests of significance, again providing quantities for the t

statistic, but only a single ANOVA table that aggregates SSs for the three contrasts. The aggregate ANOVA

corresponds to the omnibus ANOVA and adds nothing new. Only the first contrast comparing business

students to the three other groups is significant, a tidy outcome consistent with the theoretical prediction. 

GLM psypath BY major /CONTRAST(major) = SPECIAL(-1 -1 -1 3  -1 -1 2 0  -1 1 0 0).

...
Custom Hypothesis Tests
 L1            Contrast Estimate           12.000          
               Std. Error                  3.098           
               Sig.                        .001            

 L2            Contrast Estimate           3.000           
               Std. Error                  2.191           
               Sig.                        .190            

 L3            Contrast Estimate           -1.000          
               Std. Error                  1.265           
               Sig.                        .441            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 70.000         3  23.333      5.833 .007 
 Error    64.000         16 4.000                  

The following GLM specifies three separate CONTRAST subcommands, one for each contrast. This

produces a separate ANOVA for each contrast, illustrating that SSTreatment has been partitioned into three

independent components. Note that the p value for contrast 3 equals the corresponding LSD result in chapter
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2 because this is a pairwise comparison (1 vs 2) and no adjustment has been made.

GLM psypath BY major

 /CONTRAST(major) = SPECIAL(-1 -1 -1  3)

 /CONTRAST(major) = SPECIAL(-1 -1  2  0)

 /CONTRAST(major) = SPECIAL(-1  1  0  0).

...
Custom Hypothesis Tests #1
 L1            Contrast Estimate           12.000
               Std. Error                  3.098
               Sig.                        .001
 Source   Sum of Squares df Mean Square F      Sig.
 Contrast 60.000         1  60.000      15.000 .001
 Error    64.000         16 4.000

Custom Hypothesis Tests #2
 L1            Contrast Estimate           3.000
               Std. Error                  2.191
               Sig.                        .190
 Source   Sum of Squares df Mean Square F     Sig.
 Contrast 7.500          1  7.500       1.875 .190
 Error    64.000         16 4.000

Custom Hypothesis Tests #3
 L1            Contrast Estimate           -1.000          
               Std. Error                  1.265           
               Sig.                        .441            
 Source   Sum of Squares df Mean Square F    Sig. 
 Contrast 2.500          1  2.500       .625 .441 
 Error    64.000         16 4.000                 

A second way to perform contrasts with GLM is the LMATRIX option, which is useful for analyses

of factorial designs. The results are identical to those obtained with CONTRAST.

GLM psypath BY major /LMATRIX major -1 -1 -1 3.

...
Custom Hypothesis Tests
 L1       Contrast Estimate           12.000
          Std. Error                  3.098
          Sig.                        .001

 Source   Sum of Squares df Mean Square F      Sig.
 Contrast 60.000         1  60.000      15.000 .001
 Error    64.000         16 4.000

MANOVA has many options for how planned contrasts are requested and how they appear in the

output. One feature of MANOVA is that k - 1 orthogonal contrasts must be specified. The first MANOVA

shows how to specify contrasts. The format is similar to GLM but the k - 1 orthogonal sets of k coefficients

within the SPECIAL brackets follow k 1s that are entered first (these represent the grand mean). Default t-

test results follow the omnibus ANOVA and equal those observed previously. These same t tests are also

reported in later MANOVAs, but are deleted as redundant.
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MANOVA psypath BY major(1 4)

   /CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0).

...
 Estimates for psypath --- Individual univariate .9500 confidence intervals
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t
        2      12.0000000000          3.09839          3.87298           .00135
        3       3.0000000000          2.19089          1.36931           .18982
        4      -1.0000000000          1.26491          -.79057           .44076

The next MANOVA includes a /PRINT SIGNIFICANCE(SINGLEDF) subcommand that requests

SPSS to partition every Between-S effect with df  > 1 (i.e., for factors with k > 2) into single df (SINGLEDF)

tests of significance, using the contrasts specified in the CONTRAST subcommand (or default contrasts if

none are specified). The overall SSMajor is partitioned on the three lines after the omnibus F. The analysis

shows that the omnibus F for a Between-S factor is the average of the single df Fs; that is, (15.00 + 1.87 +

.63)/3 = 5.833 = FMajor. That large and small Fs are averaged together to produce the omnibus F demonstrates

that an omnibus F can fail to be significant and a specific planned contrast significant if it captures enough

variability among the means with its df = 1.

MANOVA psypath BY major(1 4) /PRINT = SIGNIFICANCE(SINGLEDF)

   /CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              64.00      16      4.00
 major                     70.00       3     23.33      5.83      .007
   1ST Parameter           60.00       1     60.00     15.00      .001
   2ND Parameter            7.50       1      7.50      1.87      .190
   3RD Parameter            2.50       1      2.50       .63      .441

 (Model)                   70.00       3     23.33      5.83      .007
 (Total)                  134.00      19      7.05
...

The final MANOVA illustrates how to request single df F tests using the /DESIGN option. The

default for MANOVA is /DESIGN factorname (major for the psychopathy study), which was omitted in

preceding analyses. Instead of an overall major effect with df = 3, the following /DESIGN statement asks for

three separate components of the major effect; major(1) denotes the first contrast, major(2) the second

contrast, and major(3) the third contrast. The numbers in parentheses represent the k - 1 = 3 contrasts, not the

k = 4 levels for major.

MANOVA psypath BY major(1 4)

   /CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0)

   /DESIGN major(1) major(2) major(3).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           64.00      16      4.00
 MAJOR(1)                  60.00       1     60.00     15.00      .001
 MAJOR(2)                   7.50       1      7.50      1.87      .190
 MAJOR(3)                   2.50       1      2.50       .63      .441

Appendix 3-1 summarizes the various ways to request contrasts in SPSS.
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Regression Analyses for the Between-S Single Factor Design

Simple regression with a single predictor can conduct ANOVA for differences between two groups,

but it can be extended to k > 2 with multiple regression. The basic principle is that p, the number of

predictors, must equal k - 1. That is, for two groups, p = 1; for three groups, p = 2; and so on. How the k - 1

predictors are created can vary. One approach is the p predictors can (but need not) correspond to k - 1

orthogonal contrasts. The first step is to create three predictors, one corresponding to each contrast; these

predictors are created using RECODE statements and appear in a later listing of the data file. Then the

dependent variable psypath is regressed on these three predictors. Entering c123v4 second means that

CHANGE statistics will reflect the contribution of that contrast. 

RECODE major (1 2 3 = -1) (4 = 3)           INTO c123v4. -1 -1 -1 +3

RECODE major (1 2   = -1) (3 = 2) (4 = 0)   INTO c12v3. -1 -1 +2  0

RECODE major (1     = -1) (2 = 1) (3 4 = 0) INTO c1v2. -1 +1  0  0

REGRESS /STAT = DEFAULT CHANGE /DESCR /DEP = psypath

   /ENTER c12v3 c1v2 /ENTER c123v4   /SAVE PRED(prdp.m) RESI(resp.m).

         Mean   Std. Deviation N  
 psypath 5.0000 2.65568        20 

 c123v4  .0000  1.77705        20 Predictors are contrasts, Ms = 0

 c12v3   .0000  1.25656        20 
 c1v2    .0000  .72548         20 

                     psypath c123v4 c12v3
             c123v4  .669   

             c12v3   .237    .000  Predictors are orthogonal rs = 0

             c1v2    -.137   .000   .000 

The preliminary descriptive statistics reveal some interesting aspects of this analysis. First, Ms = 0 for

the predictors because contrast coefficients sum to 0. Also, rs = 0 for all three correlations between

predictors because the three contrasts are orthogonal. Also each contrast has a non-zero r with the dependent

variable, although r = 0 is possible for contrasts that are independent of the means. Squaring the rs and

multiplying by SSTotal matches earlier calculations for the SSLs. To illustrate, .6692 × 134.00 = 59.97 . 60.00

= SS for the C123v4 contrast.

The remainder of the analysis reproduces earlier ANOVAs. The overall ANOVA table for Model 2

with all three predictors corresponds to the omnibus F because the predicted values are the group means (see

listing below) and the residual values equal y - y&&j, as for the MSE in ANOVA.

 Model R       R      Adjusted Std. Error of Change Statistics                              

               Square R Square the Estimate  R Square Change F Change df1 df2 Sig. F Change 

 1     .273(a) .075   -.034    2.70076       .075            .685     2   17  .517          

 2     .723(b) .522   .433     2.00000       .448            15.000   1   16  .001          

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 10.000         2  5.000       .685  .517(a) 
       Residual   124.000        17 7.294
       Total      134.000        19

© James M. Clark 2024



Analysis of Variance 3.9

 2     Regression 70.000         3  23.333      5.833 .007(b) omnibus F

       Residual   64.000         16 4.000

       Total      134.000        19

 Model            Unstandardized             Standardized    t      Sig. 
                  Coefficients               Coefficients                
                  B               Std. Error Beta                        
...
 2     (Constant) 5.000           .447                       11.180 .000 

       c12v3      .500            .365       .237            1.369  .190 

       c1v2       -.500           .632       -.137           -.791  .441 

       c123v4     1.000           .258       .669            3.873  .001 

With respect to individual predictors, the results for the regression coefficients correspond to earlier

calculations and output from ONEWAY, GLM, and MANOVA, including: the t and p values for the three

contrasts, and FChange for c123v4. Also, SSChange = 70.0 - 10.0 = 60.0 = SSL for c123v4.

Here is the data file for the study. Only the first two subjects in each group are shown.

VARIABLE LABEL prdp.m '' resp.m ''.

LIST.

y y&&j y - y&&j
 major psypath c123v4  c12v3   c1v2      prdp.m      resp.m
  1.00    2.00  -1.00  -1.00  -1.00     4.00000    -2.00000
  1.00    6.00  -1.00  -1.00  -1.00     4.00000     2.00000
...
  2.00    1.00  -1.00  -1.00   1.00     3.00000    -2.00000
  2.00    5.00  -1.00  -1.00   1.00     3.00000     2.00000
...
  3.00    5.00  -1.00   2.00    .00     5.00000      .00000
  3.00    5.00  -1.00   2.00    .00     5.00000      .00000
...
  4.00    9.00   3.00    .00    .00     8.00000     1.00000
  4.00    8.00   3.00    .00    .00     8.00000      .00000
...

One advantage of multiple regression is that one or more numerical predictors could be included to

determine the effect of controlling for predictors on differences between the means. Numerical predictors can

also reduce MSE.

Predictors need not be orthogonal, as for contrasts, because regression can determine the unique

contribution of each predictor. It is therefore possible to create predictors that correspond to some (but not all

six) of the pairwise comparisons tested by the post hoc procedures. The following analysis compares

business students (group 4) to each of the other groups in turn. Note in the descriptive statistics that the

predictors do not correspond to contrasts (Ms …0) and are not orthogonal (rs = -.333 … 0). The overall

ANOVA remains the same because predicted scores are group means. Tests for individual predictors agree

with pairwise comparisons from earlier; compare differences between means, SEs, ts, and ps from the

following regression and earlier post-hoc analyses. 

RECODE major (4 2 3 = 0) (1 = 1) INTO c4v1.

RECODE major (4 1 3 = 0) (2 = 1) INTO c4v2.

RECODE major (4 1 2 = 0) (3 = 1) INTO c4v3.
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REGRESS /DESCR /DEP = psypath /ENTER c4v1 c4v2 c4v3

 /SAVE PRED(prdp.m2) RESI(resp.m2).

         Mean   Std. Deviation N  
 psypath 5.0000 2.65568        20 

 c4v1    .2500  .44426         20 Predictors not contrasts, Ms … 0

 c4v2    .2500  .44426         20 
 c4v3    .2500  .44426         20 

                     psypath c4v1  c4v2 
             c4v1    -.223  

             c4v2    -.446   -.333 Predictors not orthogonal, rs … 0

             c4v3    .000    -.333 -.333

 Model R       R Square Adjusted R      Std. Error of   
                        Square          the Estimate    
 1     .723(a) .522     .433            2.00000         

 Model            Sum of Squares df Mean Square F     Sig.    

 1     Regression 70.000         3  23.333      5.833 .007(a) Omnibus ANOVA

       Residual   64.000         16 4.000                     

       Total      134.000        19                           

 Model            Unstandardized             Standardized    t      Sig. 
                  Coefficients               Coefficients                
                  B               Std. Error Beta
 1     (Constant) 8.000           .894                       8.944  .000 

       c4v1       -4.000          1.265      -.669           -3.162 .006 

       c4v2       -5.000          1.265      -.836           -3.953 .001 

       c4v3       -3.000          1.265      -.502           -2.372 .031 

VARIABLE LABEL prdp.m2 '' resp.m2 ''.

LIST major psypath c4v1 c4v2 c4v3 prdp.m2 resp.m2.

 major psypath   c4v1   c4v2   c4v3     prdp.m2     resp.m2
  1.00    2.00   1.00    .00    .00     4.00000    -2.00000
  1.00    6.00   1.00    .00    .00     4.00000     2.00000
...
  2.00    1.00    .00   1.00    .00     3.00000    -2.00000
  2.00    5.00    .00   1.00    .00     3.00000     2.00000
...
  3.00    5.00    .00    .00   1.00     5.00000      .00000
  3.00    5.00    .00    .00   1.00     5.00000      .00000
...
  4.00    9.00    .00    .00    .00     8.00000     1.00000
  4.00    8.00    .00    .00    .00     8.00000      .00000

SPSS Menu System and Alternative Types of Contrasts

Although some contrasts correspond to differences between means, that is not the case for all

contrasts. Polynomial contrasts, for example, are orthogonal contrasts that partition SSTreatment into linear,

quadratic, cubic, and so on components, with each component representing a linear or nonlinear pattern.  For

k = 3, the linear coefficients are -1 0 +1 and the quadratic coefficients are 1 -2 1. The former capture a

consistent increase or decrease in the means, whereas the latter capture the curvilinear pattern possible for

three groups, either U-shaped or inverted U-shaped. For k = 4, the linear coefficients are -3 -1 1 3, the

quadratic are 1 -1 -1 1, and the cubic are -1 3 -3 1. Note the increasing number of changes in direction

(bends) necessary to capture all variability in means as k increases. These and polynomial coefficients for
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Figure 3-1. GLM Contrast Menu.

larger values of k can be found in the tables.

Users do not always have to specify numerical coefficients for contrasts. Both MANOVA and GLM

have built-in coefficients for certain common contrasts, including contrasts presented earlier (called

Difference contrasts) and Polynomial contrasts. The MANOVA analysis on the next page requests

polynomial contrasts for the psychopathy study. The linear and quadratic components are significant,

indicating that psychopathy increases significantly from Humanities to Social Science to Natural Science to

Business majors, but the means deviate significantly from a pure linear relationship. The linear contrast, the

most significant, accounts for 49.0 units of variability, whereas our earlier first contrast (-1 -1 -1 3)

accounted for 60.0 units. That is, the earlier contrast provided a better single df fit to the data.

Figure 3-1 shows the selection of contrasts from

the GLM Menu. After specifying the overall design, the

Contrasts option is selected and brings up the top option

screen. For each factor in the design, it is possible to

select one of the available contrast types and click on

Change to insert it after the factor name. The default

contrast for each factor is None. Difference contrasts

(also called Reverse Helmert contrasts) correspond to

the preceding contrasts for the psychopathy study (i.e., -

1 -1 -1 3, -1 -1 2 0, -1 1 0 0). The final syntax includes

only the label for the contrast type and all k - 1 contrasts

are carried out.

One warning about SPSS contrasts. GLM and MANOVA sometimes use different numerical values

for contrast coefficients that reflect the same pattern as the integer values we use. In these cases, the final

statistics (e.g., t, F, SS) will agree with calculations, but some intermediate values may not. Previously for

example, manual calculations for the linear contrast shown below produced L = -3×4.0 + -1×3.0 + 1×5.0

+3×8.0 = 14.0, which gave SSLinear = 5×14.02/20 = 49.0. The linear coefficients used by SPSS were

normalized: -.6708, -.2236, +.2236, +.6708, which gives Σcj×y& = 3.1305, as shown below. Squared

normalized coefficients sum to 1.0 (i.e., Gcj
2 = 1.0). To calculate normalized coefficients, each coefficient is

divided by the square root of the sum of the integer coefficients squared. For example, nclinear = -3 ÷ %20 = -

.6708, where 20 = -32 + -12 + 12 + 32. Because Gcj
2 = 1.0, SSLinear = 5×3.13052/1 = 49.0.
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MANOVA psypath BY major(1 4) /PRINT = SIGNIF(SINGLE)

   /CONTRAST (major) = POLYNOMIAL.

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              64.00      16      4.00
 major                     70.00       3     23.33      5.83      .007
   1ST Parameter           49.00       1     49.00     12.25      .003
   2ND Parameter           20.00       1     20.00      5.00      .040
   3RD Parameter            1.00       1      1.00       .25      .624

 (Model)                   70.00       3     23.33      5.83      .007
 (Total)                  134.00      19      7.05

 Estimates for psypath --- Individual univariate .9500 confidence intervals
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper

        2   3.13049517     .89443    3.50000     .00296    1.23439    5.02660

        3   2.00000000     .89443    2.23607     .03994     .10390    3.89610
        4   -.44721360     .89443    -.50000     .62388   -2.34331    1.44889

Conclusions

Appendix 3-2 briefly presents some research outcomes that can be used to practice contrasts. This

finishes single factor Between-S ANOVA. The next unit covers research designs with two Between-S

factors, including the default ANOVA, post-hoc comparisons, and planned comparisons. A particularly

important topic with factorial designs is the interaction between the factors, specifically, how to determine

whether the effect of onw factor depends on the levels of other factors in the ANOVA.
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APPENDIX 3-1: SUMMARY OF ANOVA VARIATIONS FOR CONTRASTS

ONEWAY psypath BY major /CONTRAST = -1 -1 -1 3.

GLM psypath BY major /CONTRAST(major) = SPECIAL(-1 -1 -1 3).

GLM psypath BY major

/CONTRAST(major) = SPECIAL(-1 -1 -1 3  -1 -1 2 0  -1 1 0 0).

GLM psypath BY major

/CONTRAST(major) = SPECIAL(-1 -1 -1  3)

/CONTRAST(major) = SPECIAL(-1 -1  2  0)

/CONTRAST(major) = SPECIAL(-1  1  0  0).

GLM psypath BY major

/LMATRIX major -1 -1 -1 3.

MANOVA psypath BY major(1 4)

/CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0).

MANOVA psypath BY major(1 4) /PRINT = SIGNIFICANCE(SINGLEDF)

/CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0).

MANOVA psypath BY major(1 4)

/CONTRAST(major) = SPECIAL(1 1 1 1  -1 -1 -1 3   -1 -1 2 0  -1 1 0 0)

/DESIGN major(1) major(2) major(3).

© James M. Clark 2024



Analysis of Variance 3.14

APPENDIX 3-2: PRACTICE PROBLEMS FOR PLANNED COMPARISONS

For the following studies, generate a contrast with a theoretical rationale. Then, generate additional

orthogonal contrasts (with or without a rationale) until you have k - 1 orthogonal contrasts. Assuming nj = 10

observations in each condition, calculate SSTreatment and show the partitioning of SSTreatment into SSLs as shown

for example 1. Generate predictions based on the conditions and assuming you did not see the results.

1. Educational psychologists examined student free recall after using different study methods: 1. No note-taking, review lecturer’s

notes. 2. No note-taking, mental review. 3. Note-taking, mental review. 4. Note-taking, review own notes. 5. Note-taking, review

lecturer’s notes.

1 2 3 4 5

y&&j 19.2 12.4 15.3 21.8 17.8 L SSL

Con1 -3 -3 +2 +2 +2 15.0 75.0

Con2 -1 +1 0 0 0 -6.8 231.2

Con3 0 0 -2 1 1 9.0 135.0

Con4 0 0 0 -1 1 -4.0 80.0

Sum SSL 521.2 = SSTreatment

2. To test the efficacy of systematic desensitization for treatment of public speaking anxiety, Paul measured anxiety following subject

participation in one of the following conditions.

1. Control 2. Placebo 3. Insight Therapy 4. Systematic Desensitization

y&&j 36.0 33.4 32.8 24.6

3. Aggression was measured in children after exposure to one of the following five conditions.

1. Aggressive 2. Filmed 3. Cartoon 4. No 5. Non-aggressive

Model Agg Mod Agg Mod Model Model

y&&j 80 90 95 50 40

4. Infants were tested for depth perception using the visual cliff.  Mothers encouraged their infants to cross from the shallow to the “deep” side

with varying heights between the glass surface and the textured pattern below.   Heights were set at 0, 10, 20, 40, and 80 cm.

5. Bandura’s studies of modelling aggression towards a Bobo doll, included the following conditions. Analyze Males only.

Model-> Aggressive Non-Aggressive Control

F M F M

Female   5.5   7.2 2.5 0.0 1.2

Male y&&j 12.4 25.8 0.2 1.5 2.0

6. Frequency of fighting was measured in female rats following injection of:

Placebo Estradiol Testosterone

y&&j 1.8 2.1 5.0

7. Aggression in female gorillas was observed when the females were present with:

Young Females Dominant Males Adolescent Males

y&&j 20 18 5 10

8. Minutes of play was observed by blanket-attached (BA) and non-blanket-attached (NBA) children when they were alone in a novel

environment with only the following object.  Analyze results only for BA children.

Mother Blanket Hard Toy Nothing

NBA 115   40 35 25

y&&j BA 110 105 50 20

9. English and Hindi-speaking adults and infants were tested on their ability to discriminate two Hindi “t” sounds (same in English).

Hindi Adult English 7 mth English 9 mth English 11 mth English Adult

y&&j 100 90 70 20 10
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10. Time spent doing housework was observed in:

Single Women Single Men Married Women Married Men

y&&j 10 5 20 15

11. Amount of aggression between pairs of children was observed in the playground between pairs of Boys (B) and Girls (G).

B on B B on G G on B G on G

y&&j 40 10 11 8

12. Aggression was observed in adults classified by their scores on a measure of masculinity and feminity.

Masculine Feminine Androgynous Undifferentiated

y&&j 40 5 30 30

13. Frequency of discrimination was measured in the following four groups of Canadians.

White Chinese South Asian Black

y&&j 5 15 20 30

14. Participants who were Japanese or Caucasian were asked to describe couples that were either Japanese or Caucasian.  Researchers measured

the frequency of use of ethnicity-related terms in the descriptions.

Participant –> Japanese Japanese Caucasian Caucasian

Couple –> Japanese Caucasian Japanese Caucasian

y&&j 11 24 32 13

15. Americans from different ethnic groups were asked to rate how important their ethnic identity was to them.

White African Asian Hispanic

y&&j 4.59 5.73 5.29 5.45

16. Single mothers were observed interacting with their sons.  The frequency of imperatives (orders) was measured.

Middle Working Class

Class Skilled Unskilled Dad+ Unskilled Dad-

y&&j 15 50 45 47

17. Number of hours per week that teenagers spend with their peers was measured.

America Canada Japan Taiwan Beijing

y&&j 18 15 12 8 9

18. The frequency with which friends of grade 4 children make fun of people who try to do well in school was measured.

White African Hispanic Other

y&&j 18 36 30 25

19. Negative attitudes (do not accept) toward homosexuality were measured in people from different religious groups.

Fundamentalist Protestant Catholic Jewish No Religion

y&&j 75 40 35 4 11

20. Positive attitudes toward mental illness were measured.

Non-Greek Canadian Greek Canadian Greek Resident

y&&j 5.28 4.51 4.25

21. Number of words remembered was measured after Incidental or Intentional learning, with Incidental participants performing shallow

(CheckEs, #Letters) or deep (Meaning) orienting tasks when studying the words.

Incidental Incidental Incidental Intentional

Orienting Task Check Es # Letters Meaning

y&&j 9 10 15 16

22. Memory for pairs of words was tested after words were learned under the following conditions.

Repetition Separate Imagery Integrated Imagery

y&&j 35 45 80

23. Amount of organization used in learning by children who are developmentally slow or normal was tested at two age levels.

Normal Slow

6 8 6 8

y&&j 45 90 24 25
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24. Memory for words was tested after participants Studied words under water or on land and were Tested under water or on land.

Studied –> Water Land Water Land

Tested –> Land Water Water Land

y&&j 20 19 34 37

25. Memory for an initial list of words was retested after interpolated learning of materials that varied in similarity to the original list.

None Numbers Nonsense Unrelated Antonyms Synonyms

Syllables Words

y&&j 4.50 3.68 2.58 2.57 1.83 1.25

26. Subjects heard a lecture about the pros and cons of wearing seatbelts. Memory for pro and con statements was measured. Analyze results

separately for Pro and Con statements.

Participants Wear Seatbelt

Never Sometimes Always

Pro Con Pro Con Pro Con

y&&j 1.60 2.07 1.72 1.78 2.29 1.61
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CHAPTER 4 - BETWEEN-S FACTORIAL ANOVA

The single-factor Between-S design is appropriate when there is just one independent variable or

factor in the study. Researchers often examine the effect of two or more factors at the same time. Such

Between-S studies usually involve factorial designs in which subjects are randomly assigned or otherwise

belong to all combinations of the factors. For example, a social psychology study involving attitude change

about exercise might expose 60 subjects to attitude change messages in one of six conditions defined by two

levels of Expertise of the source of information (Expert vs. Nonexpert) and three levels of Threat about lack

of exercise (Low vs.  Medium vs. High). The 60 subjects would be assigned equally to the 2 × 3 = 6

conditions (or cells) defined by the two factors, 10 subjects in each cell.

Threat

Low Med High

Expert 10 10 10

Expertise

Nonexpert 10 10 10

Factorial designs have several benefits. First, they are an efficient use of subjects. In this example, 10

subjects per cell would allow comparisons between Expert and Nonexpert (i.e., H0: μExpert=μNonexpert) to be

based on 30 subjects in each condition averaged over the three levels of Threat. This is called a main effect,

the effect of Expertise averaged across levels of Threat. Similarly, it would allow comparisons between Low,

Medium, and High levels of threat (the main effect of Threat, H0: μLow=μMedium=μHigh) to be based on 20

subjects per cell averaged over the two levels of Expertise. Testing each of these effects in separate studies

would require 2 × 60 = 120 subjects to have the same degree of power for both comparisons. The effect of

one factor averaged over the levels of other factors in the analysis is called a “main effect.”

Factorial designs also allow researchers to study interactions between factors. A statistical interaction

means that the effect of one factor varies or differs across the levels of one or more other factors. For

example, Threat might work differently for Expert and Nonexpert presentations. It might increase intention to

exercise in the Expert condition but have no effect or even decrease intention to exercise in the Nonexpert

condition. The effect of Threat would differ for the different levels of Expertise (Expert vs. Nonexpert).

Interactions are often very important in psychological research, both for theoretical and practical reasons.

Appendix 4-1 shows some real-life statistical interactions. Even if there was no interaction, the factorial

design would demonstrate that the effect of each factor generalizes across the levels of the other factor. In this

example, Threat might operate the same for both Expert and Nonexpert speakers.

Factorial designs vary with respect to whether each factor is Between-Subjects or Within-Subjects.

The persuasion study as described above would involve two Between-S factors: 60 subjects randomly
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assigned with 10 subjects per cell. There would be no expectation that observations in one cell would

correlate with observations in other cells. Less plausibly, the persuasion study could be done completely

Within-S if just 10 subjects heard 6 different messages targeting a different behaviour and using all

combinations of conditions. More plausibly, 60 subjects could be tested on some trait relevant to the

dependent variable (e.g., gullibility?), formed into 10 blocks of 6 subjects matched on gullibility (i.e.,

everyone in a block had similar scores), and then assigned randomly one subject from each level of gullibility

to each cell in the study. Despite different subjects in the six conditions, it is a Within-S design for analysis

purposes because researchers would expect observations to be correlated across conditions. For example, the

most gullible subject in each group would be most likely to change their mind in all conditions and the least

gullible in each group would be least likely to change their mind. This study could also be done with one

Within-S and one Between-S factor. Factorial designs can involve more than two factors. The persuasion

study, for example, could include a third factor Gender, with half the participants Female and half Male. The

study would now involve 2 × 3 × 2 = 12 cells or conditions. Chapters 4, 5, and 6 cover two-factor Between-S

designs, and chapters 7, 8, and 9 cover analyses for designs that involve one or more Within-S factors. 

A final observation. ANOVA is often associated with true experiments in which people are randomly

assigned to conditions, but factors can be either experimental (e.g., Expertise and Threat) or non-

experimental (e.g., Gender). The statistical analysis is the same although causal inferences are stronger for

well-designed and executed experiments than for non-experimental studies. Poorly designed experiments are

no better than non-experiments and sometimes even weaker sources for drawing valid causal inferences.

Moreover, factorial analyses are simpler with equal numbers per cell, which could be less likely to occur in

non-experimental studies unless participants were selected deliberately to ensure equal numbers.

Formulas for two-factor Between-S designs require a different notation than the single factor design.

The basic notation for factorial ANOVA is described in Appendix 4-1. Briefly, capital letters A and B are

names for the two factors and also the number of levels of each factor. Lowercase letters a and b index the

different levels of A and B (comparable to j in the single factor design); that is, a = 1, 2, ..., A and b = 1, 2, ...,

B for the levels of A and B, respectively. To illustrate, y&&ab = y&&23 denotes the mean for level 2 of factor A (a =

2) and level 3 of factor B (b = 3), and n14 is the sample size for level 1 of A and level 4 of B. If factor A had 3

levels and factor B had 4 levels, the number of cells would equal A×B = 3×4 = 12. With respect to main

effects, y&&a represents the mean for each level of A averaged over levels of B and y&&b represents the mean for

each level of B averaged over levels of A. And na and nb would be the number of observations contributing to

the main effect of A and B, respectively. For the entire set of observations, y&&Grand is the mean of all scores and

N is the total number of observations.
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Calculations for Factorial ANOVA

The default factorial ANOVA partitions SSTotal into five components: SSA is the main effect of A, SSB

is the main effect of B, and SSA×B is the interaction between A and B. Error is any variability not accounted

for by the main effects and the interaction. Hence,

SSTotal = SSA + SSB + SSA×B + SSError

The df for each SS is used to calculate four MSs, one being MSError, the denominator for all effects in

the Between-S design. The remaining three MSs are each associated with a specific hypothesis about the

means that can be tested by a corresponding F. MSA and MSB will test the main effects of factors A and B,

respectively. These are called main effects because the means are averaged over the levels of the other factor.

MSAxB will test the significance of the interaction, namely whether the effect of factor A differs across levels

of factor B, or vice versa.

The analysis is illustrated for a 2×4 factorial study of mistakes in a selective attention task with

various distracting sounds. Sounds of two Types (factor A, random Noise or Speech) were played at four

levels of Volume (factor B; Subthreshold, Audible, Normal Speech, and Shouting). A total of 24 subjects

participated in the experiment, with 3 subjects assigned to each of the 2×4 = 8 cells of the experiment. The

results appear in the following table with some calculations explained next.

Volume (B)

Type (A) 1. Subthr 2. Audible 3. Speech 4. Shout y&&a na

 1  4  5  3
  1. Noise  4  2  7  5

 7  3  3  4

y&&ab   y&&11  4.0   y&&12  3.0   y&&13  5.0   y&&14  4.0 4.0 12

nab   n11   3   n12   3   n13   3   n14   3

 3  5 10  6
  2. Speech  2  2  9 10

 1  8  8  8

y&&ab   y&&21  2.0   y&&22  5.0   y&&23  9.0   y&&24  8.0 6.0 12

nab   n21   3   n22   3   n23   3   n24   3

y&&b       3.0       4.0       7.0       6.0  y&&G=5.0 N=24

nb        6        6        6        6  sG=2.798

SS Total.  To calculate SSTotal, ignore all levels of both factors, and think of the dataset as 24

individual observations with y&&G = 6.0. We would subtract y&&G from each of the 24 observations, square the

deviations, and sum them up over all subjects within a group, and then over all levels of the Volume factor

and all levels of the Type factor. This summing is represented by 333 below. See Box 4.1 for the full
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notation.

SSTotal = 333(yabi - y&&G)2= (y111 - y&&G)2 +(y112 - y&&G)2 + ... + (y242 - y&&G)2 + (y243 - y&&G)2

= (1-5.0)2 + (4-5.0)2 + (7-5.0)2 + ... + (3-5.0)2 + (5-5.0)2 + (4-5.0)2

+ (3-5.0)2 + (2-5.0)2 + (1-5.0)2 + ... + (6-5.0)2 + (10-5.0)2 + (8-5.0)2

= -52 + -22 + ... + 42 + 22

= 180.0

df = N - 1 = 24 - 1 = 23

The df = N - 1 because one y&&G was subtracted from N observations. If the overall standard deviation

for the entire set of data is known, as above, then:

SSTotal = (N-1)sG
2 = (24-1)2.7982 = 180.062 . 180.0

This represents the total variability in the 24 scores, which can partitioned into error, main effect of

Type, main effect of Volume, and the interaction between Type and Volume.

SS Error. As in the single factor Between-S design, error is the deviation of scores within each

unique condition from the mean for that condition. In factorial designs, unique conditions are defined by a

level of factor A (Type) and a level of factor B (Volume). Thus, there are 8 unique conditions in this study,

each with its own cell mean, y&&ab. SSError is the deviations of the three observations in each condition from y&&ab,

squared, summed across the three (nab) observations in each condition, and then across the four levels of B

and the two levels of A (i.e., over all 8 conditions). These operations are illustrated below. Note as well that

SSError can be obtained by summing SSab across all conditions and SSab for each condition can be obtained

from sab if known. 

SSError =  333(yabi - y&&ab)
2 = (y111 - y&&11)

2 + (y112 - y&&11)
2 + ... + (y242 - y&&24)

2 + (y243 - y&&24)
2

= (1-4.0)2 + (4-4.0)2 + (7-4.0)2 + ... + (3-4.0)2 + (5-4.0)2 + (4-4.0)2

+ (3-2.0)2 + (2-2.0)2 + (1-2.0)2 + ... + (6-8.0)2 + (10-8.0)2 + (8-8.0)2

= -32 + 02 + 32 ...+ -22 + 22 + 02

= 60.0

= 33SSab = SS11 + SS12 + ... + SS24 = 18.0 + ... + 8.0

= 33(nab - 1)sab
2 = (n11-1)s2

11 + (n12-1)s2
12 + ... + (n24-1)s2

24 = (3-1)×3.02 + ...(3-1)×2.02

df = 33(nab - 1) = (n11 - 1) + (n12 - 1) + ... + (n24 -1) = (3-1) + ...

= 16

= N - A×B = 24 - 2×4 = 24 - 8 = 16

SS Main Effects. To calculate SS for the main effects of A and B, treat the study as though the other

factor does not exist. Averaged across the Volume factor, Type (factor A) produces two means, each based on

12 observations (na); these are denoted in general as y&&a. For the first level of A (i.e., a = 1), y&&1. = 4.0, and for

the second level of A (i.e., a = 2), y&&2. = 6.0. The period (.) in the subscript indicates that 1 and 2 refer to the

levels for A, the first factor, rather than B. Similarly, averaged across the Type factor, Volume (or B)

produces four means, each based on 6 observations (nb); these are denoted in general as y&&b, giving y&&.1 = 3.0,

y&&.2 = 4.0, y&&.3 = 7.0, and y&&.4 = 6.0. The period in the first position indicates that the subscripts refer to levels of
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Box 4-1. ANOVA Formula

B, the second factor. SSA and SSB can now be calculated essentially in the same manner as the single-factor

SS for treatment. That is,

SSA = 3na(y&&a - y&&G)2 = 12(4.0 - 5.0)2 + 12(6.0 - 5.0)2 

= 12×-1.02 + 12×1.02 or 12×(-12 + 12) when nas are equal

= 24.0

dfA = A - 1 = 2 - 1 = 1

SSB = 3nb(y&&b - y&&G)2 = 6(3.0 - 5.0)2 + 6(4.0 - 5.0)2 + 6(7.0 - 5.0)2 + 6(6.0 - 5.0)2

= 6(-2.02 + -1.02 +  2.02 +  1.02)

= 60.0

dfB = B - 1 = 4 - 1 = 3

SS Interaction. We later consider ways to compute SSA×B directly from sample means, but it can also

be calculated by subtraction. SSA×B is variability left over from SSTotal after SSError, SSA and SSB are removed;

that is,

SSA×B = SSTotal - SSError - SSA - SSB = 180.0 - 60.0 - 24.0 - 60.0 = 36.0

dfA×B = dfTotal - dfError - dfA - dfB = 23 - 16 - 1 - 3 = 3 = (A-1)(B-1) = (2-1) × (4-1) = 1 × 3

These calculations are summarized in Box 4-1 and produce all

quantities needed for the Between-S two-factor ANOVA, shown below.

The results correspond exactly to SPSS analyses that follow. The H0s for

Type and Volume are rejected, analogous to H0 in the single factor design.

The H0 for T×V is No Interaction, explained more fully later. Here the

observed F for the interaction is close to significance, sometimes referred

to as “marginally significant” in journal articles.

Source SS df MS F df F.05

Type   24.0   1 24.00 6.40 1, 16 4.49 Rej H0: µN = µS.

Volume     60.0   3 20.00 5.33 3, 16 3.24 Rej H0: µV1 = µV2 = µV3 = µV4

T x V   36.0   3 12.00 3.20 3, 16 3.24 “Do Not Rej” H0: ??

Error   60.0 16   3.75

Total 180.0 23

SPSS Analyses for Between-S Factorial Design

The standard way to enter data for two-factor Between-S designs is to enter three values for each case:

one for the level of factor A (typ), a second for the level of factor B (vol), and a third for the dependent

variable, mistakes (mis) in this study. The following syntax creates a data set with 24 rows and 3 values for

each row or case: level for Type, level for Volume, and number of mistakes.

The GLM command allows for multiple BS factors after the BY term, here typ and vol, and the PLOT

option graphs main effects or interactions. The descriptive statistics provide enough information to complete

the ANOVA calculations. Operations performed earlier to calculate SSs manually are shown to the right of
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the descriptive statistics.

DATA LIST FREE / typ vol mis.

BEGIN DATA

1 1  1 1 1  4 1 1  7 1 2  4 1 2  2 1 2  3

1 3  5 1 3  7 1 3  3 1 4  3 1 4  5 1 4  4

2 1  3 2 1  2 2 1  1 2 2  5 2 2  2 2 2  8

2 3 10 2 3  9 2 3  8 2 4  6 2 4 10 2 4  8

END DATA.

GLM mis BY typ vol /PRINT = DESCR /PLOT = PROFILE(vol BY typ).

 typ   vol   Mean Std. Deviation N  SSTotal    SSError na(y&&a-y&&G)
2 nb(y&&b-y&&G)

2

 1     1     4.00 3.000          3    (3-1)3.02

       2     3.00 1.000          3    (3-1)1.02

       3     5.00 2.000          3    ...
       4     4.00 1.000          3    ...

       Total 4.00 1.809          12 12(4.0-5.0)2

 2     1     2.00 1.000          3    ...
       2     5.00 3.000          3    ...
       3     9.00 1.000          3    ...
       4     8.00 2.000          3    ...

       Total 6.00 3.303          12 12(6.0-5.0)2

 Total 1     3.00 2.280          6  6(3.0-5.0)2

       2     4.00 2.280          6  6(4.0-5.0)2

       3     7.00 2.608          6  6(7.0-5.0)2

       4     6.00 2.608          6  6(6.0-5.0)2

       Total 5.00 2.798          24 (24-1)2.7982

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares                                     

 Corrected Model 120.000(a)      7  17.143      4.571   .006 = SSA + SSB + SSAxB

 Intercept       600.000         1  600.000     160.000 .000 = 24 × (5.0 - 0)2

 typ             24.000          1  24.000      6.400   .022 

 vol             60.000          3  20.000      5.333   .010 

 typ * vol       36.000          3  12.000      3.200   .052 

 Error           60.000          16 3.750                    

 Total           780.000         24                         600.0 + SSTotal

 Corrected Total 180.000         23                         SSTotal

a R Squared = .667 (Adjusted R Squared = .521) R2 = 120.0/180.0

The GLM results in bold agree with earlier calculations. Dividing SS by df produces the four MSs

required to test the three hypotheses. MSError = 60.0 / 16 = 3.75 is the denominator for the three critical tests.

The notes above explain some of the secondary quantities calculated by GLM. Note in particular that our

SSTotal is the Corrected Total in GLM. The significance values for the main effect tests lead to the following

conclusions, identical to the earlier conclusions based on critical values.
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Figure 4-1. Cell Means.

Reject H0: μNoise = μSpeech Sig. = .022

Reject H0: μV1 = μV2 = μV3 = μV4 Sig. = .010

In both cases, we reject H0 and accept Ha that one or more equalities

is false. The conclusion about the interaction is somewhat ambiguous; as

shown earlier, the F is very close to significant, p = .052, and the graph in

Figure 4-1 indicates an interaction. Specifically, the effect of Volume

appears different for the Noise and Speech distractors, being much stronger

for Speech. Equivalently, the difference between Speech and Noise is larger

for high levels of Volume (i.e., 3 and 4) than for low levels of Volume (1

and 2). Later examination of interaction analyses will show that the

standard F test for A×B is optimal only for complete cross-over

interactions and can be insensitive to many observed interactions. That is,

the default test is most sensitive when all variability between conditions is due to interaction and none to

main effects.

The following MANOVA analysis duplicates the various quantities calculated earlier and produced by

GLM.

MANOVA mis BY typ(1 2) vol(1 4) /PRINT = CELL.

      FACTOR           CODE        Mean  Std. Dev.          N 
  typ                    1
   vol                    1        4.000      3.000          3
   vol                    2        3.000      1.000          3
   vol                    3        5.000      2.000          3
   vol                    4        4.000      1.000          3
  typ                    2
   vol                    1        2.000      1.000          3
   vol                    2        5.000      3.000          3
   vol                    3        9.000      1.000          3
   vol                    4        8.000      2.000          3

 For entire sample                 5.000      2.798         24

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              60.00      16      3.75
 typ                       24.00       1     24.00      6.40      .022
 vol                       60.00       3     20.00      5.33      .010
 typ BY vol                36.00       3     12.00      3.20      .052

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83

Using SPSS to Compute SSs

There are several ways for SPSS to calculate SSs for the Between-S factorial. One method uses GLM

to compute and save predicted (and residual) values. The next few analyses illustrate the process. The various
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scores produced are shown after the final analysis. ANOVA output is deleted.

GLM mis /SAVE PRED(mg). Saves y&&G as mg

...

COMPUTE tot = mis - mg. y - y&&G = Residual if saved in GLM above

COMPUTE tot2 = tot**2. (y - y&&G)
2

DESCR tot2 /STAT = SUM.

                 N  Sum      

 tot2            24 180.0000 = SSTotal

GLM mis BY typ vol /SAVE PRED(mab). Saves y&&ab as mab

COMPUTE err = mis - mab. y - y&&ab = Residual if saved in GLM above

COMPUTE err2 = err**2.

DESCR err2 /STAT = SUM.

                 N  Sum     

 err2            24 60.0000 = SSError

  

GLM mis BY typ /SAVE PRED(ma). Saves y&&a as ma

COMPUTE amain = ma - mg. y&&a - y&&G

COMPUTE amain2 = amain**2.

DESCR amain2 /STAT = SUM.

                 N  Sum     

 amain2          24 24.0000 = SSA = SSType

GLM mis BY vol /SAVE PRED(mb). Saves y&&b as mb

COMPUTE bmain = mb - mg. y&&b - y&&G

COMPUTE bmain2 = bmain**2.

DESCR bmain2 /STAT = SUM.

                 N  Sum     

 bmain2          24 60.0000 = SSB = SSVolume

The following table shows the variables created by the preceding commands. Squared deviations are

not shown.

LIST typ vol mis mg tot mab err ma amain mb bmain.

    y    y&&G  y-y&&G      y&&ab  y-y&&ab             y&&a  y&&a-y&&G      y&&b  y&&b-y&&G

typ vol mis    mg   tot   mab   err    ma amain    mb bmain

 1   1    1   5.0  -4.0   4.0  -3.0   4.0  -1.0   3.0  -2.0
 1   1    4   5.0  -1.0   4.0    .0   4.0  -1.0   3.0  -2.0
 1   1    7   5.0   2.0   4.0   3.0   4.0  -1.0   3.0  -2.0

 1   2    4   5.0  -1.0   3.0   1.0   4.0  -1.0   4.0  -1.0
 1   2    2   5.0  -3.0   3.0  -1.0   4.0  -1.0   4.0  -1.0
 1   2    3   5.0  -2.0   3.0    .0   4.0  -1.0   4.0  -1.0

 1   3    5   5.0    .0   5.0    .0   4.0  -1.0   7.0   2.0
 1   3    7   5.0   2.0   5.0   2.0   4.0  -1.0   7.0   2.0
 1   3    3   5.0  -2.0   5.0  -2.0   4.0  -1.0   7.0   2.0

 1   4    3   5.0  -2.0   4.0  -1.0   4.0  -1.0   6.0   1.0
 1   4    5   5.0    .0   4.0   1.0   4.0  -1.0   6.0   1.0
 1   4    4   5.0  -1.0   4.0    .0   4.0  -1.0   6.0   1.0
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Box 4-2. Cell Means Minus Main Effects.

 2   1    3   5.0  -2.0   2.0   1.0   6.0   1.0   3.0  -2.0
 2   1    2   5.0  -3.0   2.0    .0   6.0   1.0   3.0  -2.0
 2   1    1   5.0  -4.0   2.0  -1.0   6.0   1.0   3.0  -2.0

 2   2    5   5.0    .0   5.0    .0   6.0   1.0   4.0  -1.0
 2   2    2   5.0  -3.0   5.0  -3.0   6.0   1.0   4.0  -1.0
 2   2    8   5.0   3.0   5.0   3.0   6.0   1.0   4.0  -1.0

 2   3   10   5.0   5.0   9.0   1.0   6.0   1.0   7.0   2.0
 2   3    9   5.0   4.0   9.0    .0   6.0   1.0   7.0   2.0
 2   3    8   5.0   3.0   9.0  -1.0   6.0   1.0   7.0   2.0

 2   4    6   5.0   1.0   8.0  -2.0   6.0   1.0   6.0   1.0
 2   4   10   5.0   5.0   8.0   2.0   6.0   1.0   6.0   1.0
 2   4    8   5.0   3.0   8.0    .0   6.0   1.0   6.0   1.0

 32=SSTotal  32=SSError  32=SSType  32=SSVolume

Computing SS for the Interaction

Subtracting SSs to obtain the interaction is correct and shows that the interaction is variability not

accounted for by main effects or error, but it is inadequate for understanding what the actual quantity SSA×B

represents. Calculating the interaction directly reveals more clearly what aspect of the data is captured by

SSA×B and also explicitly shows the partitioning of SSTotal. Analogous to subtracting SSs from SSTotal, SSA×B

can be calculated by determining if there is any variability left in the cell means (the y&&abs) when main effects

are removed. Or we could determine whether the observed cell means differ from the cell means expected if

there were only main effects and no interaction. Both approaches lead to the same conclusion and equal SSA×B

as calculated by subtraction.

Below are the 8 cell means (y&&ab) calculated earlier,

along with the row means (y&&a), the column means (y&&b),

and the grand mean (y&&G). The main effect of A (i.e.,

deviation from y&&G) is shown in the column headed y&&a - y&&G, and the main effect of B is shown in the row

labelled y&&b - y&&G. Subtracting these effects from the cell means removes main effects (see formula in Box 4-

2). The subsequent two tables show the results of subtracting these main effects.

Volume (B)

y&&ab  1  2  3  4 y&&a y&&a - y&&G

Type (A) 1  4  3  5  4 4.0 -1.0
  2  2  5  9  8 6.0 +1.0

y&&b  3.0  4.0  7.0  6.0 y&&G = 5.0
y&&b-y&&G -2.0  -1.0  +2.0  +1.0

y&&’
ab= y&&ab-(y&&b-y&&G)  y&&”

ab= y&&
’
ab-(y&&a

’-y&&G)

1 2 3 4 y&&a
’   y&&a

’-y&&G 1 2 3 4 y&&a
”

  1 6 4 3 3 4.0  -1.0   1 7 5 4 4 5.0
  2 4 6 7 7 6.0 +1.0   2 3 5 6 6 5.0

y&&’
b 5.0 5.0 5.0 5.0 y&&G 5.0 y&&”

b   5.0 5.0 5.0 5.0 y&&G 5.0
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Box 4-3. Grand Mean Plus Main Effects.

The bottom left table shows the result of subtracting the main effect of B. The two original means for

Volume 1 are adjusted by subtracting the B effect of Volume 1, which is -2.0; to illustrate, y&&11 = 4.0, and y&&’11

= 4.0 - -2.0 = 6.0, and y&&21 = 2.0, and y&&’21 = 2.0 - -2.0 = 4.0. Cell means for Volumes 2, 3, and 4 are adjusted

by subtracting their Volume main effects: -1.0, +2.0, and +1.0, respectively. The adjusted cell means are

denoted y&&’ab. The main effect means for factor B using these adjusted cell means all equal the grand mean;

that is, all y&&’bs = 5.0 = y&&G. The main effect of B has been removed or eliminated.

The bottom right table removes the main effects for A from each y&&’ab in a similar manner, producing a

y&&”ab for each cell free of both main effects. For example, y&&”11 = 6.0 - -1.0 = 7.0. Now all the row and column

main effect means equal y&&G = 5.0. If there was only main effects in the results and no interaction, the 8

adjusted cell means y&&”ab would all also equal y&&G = 5.0. The fact that the adjusted cell means differ from 5.0

indicates the presence of an interaction in the data. That is, there is variability due to the unique combination

of specific levels of Factor A and specific levels of Factor B, over and above the main effects of A and B,

which have been removed.

The final step to calculate SSInteraction is: subtract y&&G from each y&&”ab, square the deviations, multiply by

the number of observations in each cell (i.e., nab = 3), and sum to get a total. The resulting deviations are

shown in the next table. Therefore, SSInteraction = 3×(+22 + 02 + -12 + -12 + -22 + 02 + 12 + 12) = 36.0, the value

obtained earlier by subtracting SSs. What these deviations mean is explained shortly.

y&&”ab-y&&G

Type 1 2 3 4
1 +2.0 0.0 -1.0 -1.0
2 -2.0 0.0 +1.0 +1.0

The second approach to SSInteraction is to calculate

predicted cell means if there were only main effects and

no interaction, and then determine how much the

observed cell means (y&&ab) deviate from the no interaction cell means (see formula in Box 4-3). These

deviations will equal those just calculated; squaring, multiplying by nab, and summing will produce SSInteraction.

What this approach demonstrates is that SSA×B represents how much the observed cell means deviate from

those expected if there was no interaction.

To determine the expected cell means given no interaction, add the main effects of A and B to the

grand mean, as illustrated in the left table below after the observed cell means. For example, y&&’11 = 5.0 + -1.0

+ -2.0 = 2.0. The right table shows deviations of observed cell means (y&&ab - y&&’ab) from the predicted cell

means given no interaction; that is, (y&&ab - y&&’ab). These deviations equal those calculated earlier.
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Volume (B)

y&&ab  1  2  3  4 y&&a y&&a - y&&G

Type (A) 1  4  3  5  4 4.0 -1.0
  2  2  5  9  8 6.0 +1.0

y&b  3.0  4.0  7.0  6.0 y&&G = 5.0
y&&b-y&&G -2.0  -1.0  +2.0  +1.0

y&&’ab
 = y&&G + (y&&a-y&&G) + (y&&b-y&&G) y&&ab-y&&’ab

  1  2  3  4 y&&a y&&a-y&&G  1 2 3 4

  1  2  3  6  5 4.0 -1.0   1 +2.0 0.0 -1.0 -1.0

  2  4  5  8  7 6.0 +1.0   2 -2.0 0.0 +1.0 +1.0

y&&b  3.0  4.0  7.0  6.0 y&&G 5.0

y&&b-y&&G -2.0 -1.0 +2.0 +1.0

The critical aspect of the predicted cell means in the table on the left is that the main effects of A are

the same at every level of B. The difference between Noise and Speech is exactly 2.0 units for Volumes 1, 2,

3, and 4, indicating 0 interaction. Equivalently, the main effect deviations for the two levels of A (i.e., -1 and

+1) are the same at every level of Volume as shown by the deviation of cell means from column means. The

main effects of B are also the same at every level of A since the main effect deviations for Volume (-2, -1,

+2, +1) are identical for the Noise and Speech conditions, as shown by deviations of cell means from row

means. That is, the deviations of 2.0, 3.0, 6.0, and 5.0 from the Noise row mean of 4.0 are -2, -1, +2, and +1,

and the deviations of 4.0, 5.0, 8.0, and 7.0 from the Speech row mean of 6.0 are -2, -1, +2, and +1, equal to

deviations for the Noise condition and the main effect of Volume.

A graph of y&&’ab above would produce parallel lines, as shown shortly, indicating no interaction. The

interaction deviations in the right table and the earlier table indicate how far away the observed cell means,

y&ab, are from parallel lines (i.e., from 0 interaction). The null hypothesis for the interaction would be that all

these deviations would be 0 in terms of µ ab, that is, deviations representing interaction would all be 0 in the

population.

SPSS Calculation of SSInteraction

Earlier analyses did much of the work necessary for GLM to compute SSInteraction when we computed

the main effects and error using GLM. Specifically, GLM saved predicted scores for y&&G, y&&ab, y&&a, and y&&b and

then calculated y&&a - y&&G (called amain) and y&&b - y&&G (called bmain). These quantities are enough to compute

the interaction according to the two procedures described above, first removing main effects.

COMPUTE mabsubmain = mab - amain - bmain. y&&ab - ( y&&a- y&&G) - ( y&&b - y&&G)

COMPUTE intone = mabsubmain - mg. { y&&ab - ( y&&a- y&&G) - ( y&&b - y&&G)} - y&&G

COMPUTE intone2 = intone**2.

DESCR intone2 /STAT = SUM.

                 N  Sum     
 intone2         24 36.0000 
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The second method is to generate predicted cell means for only main effects and subtract these values

from the cell means. Two methods can be used to obtain predicted cell means with only main effects, the first

using COMPUTE statements.

COMPUTE mabmain = mg + amain + bmain. y&&G + (y&&a-y&&G) + (y&&b - y&&G)

COMPUTE inttwo = mab - mabmain. y&&ab - {y&&G + (y&&a-y&&G) + (y&&b - y&&G)}
COMPUTE inttwo2 = inttwo**2.

DESCR inttwo2 /STAT = SUM.

                 N  Sum     
 inttwo2         24 36.0000 

Cell means for no interaction can also be obtained with the /DESIGN option on GLM. The default

GLM tests main effects and interaction and corresponds to /DESIGN typ vol typ BY vol, whereas /DESIGN

typ vol instructs GLM to calculate main effects only and use those main effects to generate predicted scores.

GLM mis BY typ vol /SAVE PRED(mabmaintwo) /DESIGN typ vol.

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares                                     
 Corrected Model 84.000(a)       4  21.000      4.156   .014 
 Intercept       600.000         1  600.000     118.750 .000 
 typ             24.000          1  24.000      4.750   .042 
 vol             60.000          3  20.000      3.958   .024 
 Error           96.000          19 5.053
 Total           780.000         24
 Corrected Total 180.000         23

FORMAT typ vol (F1.0) mis (F2.0) mg TO mabmaintwo (F4.1).

LIST.
typ vol mis   mg  mab   ma amain   mb bmain mabsubmain intone intone2 mabmain inttwo inttwo2 mabmaintwo

 1   1    1  5.0  4.0  4.0  -1.0  3.0  -2.0     7.0      2.0     4.0     2.0    2.0     4.0      2.0

 1   1    4  5.0  4.0  4.0  -1.0  3.0  -2.0     7.0      2.0     4.0     2.0    2.0     4.0      2.0

 1   1    7  5.0  4.0  4.0  -1.0  3.0  -2.0     7.0      2.0     4.0     2.0    2.0     4.0      2.0

 1   2    4  5.0  3.0  4.0  -1.0  4.0  -1.0     5.0       .0      .0     3.0     .0      .0      3.0

 1   2    2  5.0  3.0  4.0  -1.0  4.0  -1.0     5.0       .0      .0     3.0     .0      .0      3.0

 1   2    3  5.0  3.0  4.0  -1.0  4.0  -1.0     5.0       .0      .0     3.0     .0      .0      3.0

 1   3    5  5.0  5.0  4.0  -1.0  7.0   2.0     4.0     -1.0     1.0     6.0   -1.0     1.0      6.0

 1   3    7  5.0  5.0  4.0  -1.0  7.0   2.0     4.0     -1.0     1.0     6.0   -1.0     1.0      6.0

 1   3    3  5.0  5.0  4.0  -1.0  7.0   2.0     4.0     -1.0     1.0     6.0   -1.0     1.0      6.0

 1   4    3  5.0  4.0  4.0  -1.0  6.0   1.0     4.0     -1.0     1.0     5.0   -1.0     1.0      5.0

 1   4    5  5.0  4.0  4.0  -1.0  6.0   1.0     4.0     -1.0     1.0     5.0   -1.0     1.0      5.0

 1   4    4  5.0  4.0  4.0  -1.0  6.0   1.0     4.0     -1.0     1.0     5.0   -1.0     1.0      5.0

 2   1    3  5.0  2.0  6.0   1.0  3.0  -2.0     3.0     -2.0     4.0     4.0   -2.0     4.0      4.0

 2   1    2  5.0  2.0  6.0   1.0  3.0  -2.0     3.0     -2.0     4.0     4.0   -2.0     4.0      4.0

 2   1    1  5.0  2.0  6.0   1.0  3.0  -2.0     3.0     -2.0     4.0     4.0   -2.0     4.0      4.0

 2   2    5  5.0  5.0  6.0   1.0  4.0  -1.0     5.0       .0      .0     5.0     .0      .0      5.0

 2   2    2  5.0  5.0  6.0   1.0  4.0  -1.0     5.0       .0      .0     5.0     .0      .0      5.0

 2   2    8  5.0  5.0  6.0   1.0  4.0  -1.0     5.0       .0      .0     5.0     .0      .0      5.0

 2   3   10  5.0  9.0  6.0   1.0  7.0   2.0     6.0      1.0     1.0     8.0    1.0     1.0      8.0

 2   3    9  5.0  9.0  6.0   1.0  7.0   2.0     6.0      1.0     1.0     8.0    1.0     1.0      8.0

 2   3    8  5.0  9.0  6.0   1.0  7.0   2.0     6.0      1.0     1.0     8.0    1.0     1.0      8.0

 2   4    6  5.0  8.0  6.0   1.0  6.0   1.0     6.0      1.0     1.0     7.0    1.0     1.0      7.0

 2   4   10  5.0  8.0  6.0   1.0  6.0   1.0     6.0      1.0     1.0     7.0    1.0     1.0      7.0

 2   4    8  5.0  8.0  6.0   1.0  6.0   1.0     6.0      1.0     1.0     7.0    1.0     1.0      7.0

32=SSInteraction  32=SSInteraction
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MANOVA and the Interaction Deviations

MANOVA can also generate the interaction deviations. The /PMEANS command in MANOVA

generates predicted means based on the design. For the full factorial, predicted means equal observed cell

means and there is no deviation or difference between predicted and observed means. If only main effects are

specified for /DESIGN, predicted cell means are based on main effects and observed minus predicted means

equal the interaction deviations. The next two analyses show the predicted means and residuals (deviations)

for the full factorial and the main effect analyses. The /DESIGN typ vol typ BY vol in the first MANOVA is

the default factorial and optional. Note Est. Mean and Raw Resid. columns differ in the two results.

MANOVA mis BY typ(1 2) vol(1 4) /PMEANS /DESIGN typ vol typ BY vol.

...
 Adjusted and Estimated Means
       Factor  Code   Obs. Mean  Adj. Mean     Est. Mean    Raw Resid.   Std. Resid.
  typ            1
   vol             1   4.00000    4.00000       4.00000        .00000        .00000
   vol             2   3.00000    3.00000       3.00000        .00000        .00000
   vol             3   5.00000    5.00000       5.00000        .00000        .00000
   vol             4   4.00000    4.00000       4.00000        .00000        .00000

  typ            2
   vol             1   2.00000    2.00000       2.00000        .00000        .00000
   vol             2   5.00000    5.00000       5.00000        .00000        .00000
   vol             3   9.00000    9.00000       9.00000        .00000        .00000
   vol             4   8.00000    8.00000       8.00000        .00000        .00000

MANOVA mis BY typ(1 2) vol(1 4) /PMEANS /DESIGN typ vol.

...
 Adjusted and Estimated Means

       Factor   Code  Obs. Mean   Adj. Mean    Est. Mean    Raw Resid.   Std. Resid.

  typ             1

   vol              1  4.00000     2.00000       2.00000       2.00000        .88976

   vol              2  3.00000     3.00000       3.00000        .00000        .00000

   vol              3  5.00000     6.00000       6.00000      -1.00000       -.44488

   vol              4  4.00000     5.00000       5.00000      -1.00000       -.44488

  typ             2

   vol              1  2.00000     4.00000       4.00000      -2.00000       -.88976

   vol              2  5.00000     5.00000       5.00000        .00000        .00000

   vol              3  9.00000     8.00000       8.00000       1.00000        .44488

   vol              4  8.00000     7.00000       7.00000       1.00000        .44488

In the second analysis, the Obs. Mean column shows the 8 cell means and the Adj. Mean or Est. Mean

column shows means expected on the basis of main effects. These values equal those calculated previously.

The Raw Resid. column shows the deviations of observed from expected means, which represent the

interaction. Squaring these values and multiplying by nab=3 for each cell gives SSTxV.

Graphing the Interaction and Related Quantities

Graphs are an excellent way to show interaction effects, and there are several methods in SPSS to
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Figure 4-2. Graph menu

Figure 4-3. Predicted Cell Means if

No Interaction

Figure 4-4. Cell Means Minus

Main Effects

graph the results of factorial ANOVAs. The basic factorial graph for a two-factor study uses the horizontal

axis for one factor (usually the one with the most levels, here vol with four levels), and separate lines and

markers for the other factors (here typ with two levels). The graph in Box 4-1 was created by the following

GLM command, specifically the /PLOT = PROFILE(effects)

option. The effects can be either main effects (e.g.,

PROFILE(vol)) or interactions, as shown here.

GLM mis BY typ vol /PLOT = PROFILE(vol BY typ).

This same graph could have been produced from menus

by Graph | Line | Multiple | Define, which brings up the dialogue

box in Figure 4-2. Users specify which factor goes on the

Category Axis (vol has been inserted here) and which factor is

used to Define Lines (typ here). Users also have the option of

what to plot; here we want to plot the means for mis, our dependent

variable. Clicking Ok creates the basic graph, which can be edited in the

chart editor.

Understanding the factorial ANOVA, especially the interaction,

benefits from plotting intermediate quantities produced previously,

namely expected cell means with just main effects and no interaction, and

adjusted cell means with main effects removed (i.e., pure interaction).

The original (Figure 4-1) and main effects only (Figure 4-3)

graphs illustrate the logic of the interaction deviations. In essence the

deviation for each cell represents how far its mean is from where it would

be if there were only main effects and no interaction, as represented in

Box 4-3. The observed mean for Speech at Volume 1, for example, is 2.0,

which is 2 units lower than the 4.0 it would be if there was no interaction.

The sum of the deviations squared times nab represents evidence for an

interaction between Volume and Type of distractor in this study.

Figure 4-4 shows a plot of the adjusted cell means with main

effects removed. This graph represents “pure” interaction. The mean score

for each cell is 5.0 when averaged across levels of the other factor. In this

graph the interaction is the deviation of the adjusted cell means from the

grand mean of 5.0, which all cells would equal if there is no interaction.
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To illustrate, the adjusted cell mean for Speech at Volume 1 is 3.0, which is 2 units lower than the grand

mean.

Although awkward, we could now state formally the H0 for the interaction. Specifically, for all cells

µ ab =µG +(µ a -µG) +(µb -µG) or µ ab -{µG +(µ a -µG) +(µb -µG)} =0. Much easier to say No Interaction.

The present study showed significant main effects for Volume and Type, and a marginally significant

(p = .052) interaction. The results for a factorial design can produce any combination of significance for the

three effects. One or both main effects can be significant or not, and the interaction can be significant or not,

all independent of one another to a large degree depending on the nature of the interaction. Appendix 4-3

illustrates diverse outcomes that are possible for a factorial design with two factors. With more factors, more

complex combinations of effects can be significant or not. And possible patterns for each factor become even

more complex as the number of levels of each factor increase. Appendix 4-4 demonstrates the importance of

sample size for statistical analyses to reach significance. In the distraction study, the marginally significant

interaction becomes highly significant with more subjects.

As with single factor designs, rejecting the null hypothesis can be ambiguous and require further

analyses of main and interaction effects. Or even if omnibus effects are not significant, some effects may

warrant further investigation if certain patterns are predicted. These topics are examined next.
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GxE Interaction: Maze learning errors

for genetically bright and dull animals

reared in different environments.

APPENDIX 4-1: EXAMPLES OF INTERACTIONS

© James M. Clark 2024



Analysis of Variance 4.17

© James M. Clark 2024



Analysis of Variance 4.18

APPENDIX 4-2: NOTATION FOR FACTORIAL DESIGNS

The general notation for factorial designs is summarized in the following box. The two factors are

labelled A and B, respectively; A is the column factor and B the row factor here, but that is arbitrary.

Uppercase A and B also refer to the number of levels of each factor (the value represented by k in the single

factor designs), and the corresponding lowercase letters act as subscripts (instead of j as in the single factor

designs) to represent levels of each factor (i.e., a = 1, 2, ..., A; b = 1, 2, ..., B).  We use s (instead of i) and n

(or N) to refer to subjects. Capital S denotes the subject variable.

Each observation in the design is indicated by yabs, where the three subscripts indicate the level of A,

the level of B, and the individual subject (level of S) within that particular AB combination. For example, the

fifth observation in the third level of A and the second level of B would be y325. Each cell of the design has nab

observations, representing the number of observations in each combination of a level of A and a level of B.

The nab observations in each cell can be averaged to produce a cell mean, indicated by y&ab. Computing the

deviation of each cell observation from the cell mean (i.e., y-y&ab) and summing the squared deviations

produces a SSs and standard deviation for each cell, denoted by SSab and sab, respectively.

The total number of observations in the analysis is indicated by capital N. Summing all the

observations and dividing by N produces a grand mean, represented by y&G. All the scores could also be used

Factor A

1 2 ... a ... A Row Means

S

1 1 y111 y211

2 y112

s

...

2 1

2

s

...

...

Factor B b yabs

y&ab Cell means y&b

nab nb

SSab

sab

...

B

Column Means y&a y&G Grand mean

  na N

SSG

sG

Notation for Factorial Designs.
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to calculate an SSG (or SSTotal) and standard deviation for all the scores, sG.

Calculation of the main effect of A requires means and ns for each level of A averaged over levels of

B (i.e., y&a and na). The number of observations na will depend on the number of observations in each cell, nab,

and the number of levels of B. The main effect of B will require means and ns for each level averaged across

levels of A (i.e., y&b and nb), where nb will be determined by nab and the number of levels of A.
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APPENDIX 4-3:SAMPLE FACTORIAL ANOVA OUTCOMES

The following analyses illustrate some possible outcomes for a factorial 2 x 3 design. Note

independent significance of main effects (a, b) and interaction (a×b). Significant effects are bolded in output.

These analyses could also be used to practice calculations using the descriptive statistics.

GLM y1 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 2.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 3.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 Total 1.00  13.0000 1.46385        15 
       2.00  13.0000 1.46385        15 
       Total 13.0000 1.43839        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       
 a               .000            2  .000        .000     1.000 
 b               .000            1  .000        .000     1.000 
 a * b           .000            2  .000        .000     1.000 
 Error           60.000          24 2.500
 Corrected Total 60.000          29

GLM y2 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  12.0000 1.58114        5  
       2.00  12.0000 1.58114        5  
       Total 12.0000 1.49071        10 

 2.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 3.00  1.00  14.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 14.0000 1.49071        10 

 Total 1.00  13.0000 1.69031        15 
       2.00  13.0000 1.69031        15 
       Total 13.0000 1.66091        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       

 a               20.000          2  10.000      4.000    .032  

 b               .000            1  .000        .000     1.000 
 a * b           .000            2  .000        .000     1.000 
 Error           60.000          24 2.500                      
 Corrected Total 80.000          29                            
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GLM y3 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 2.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 3.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 Total 1.00  12.0000 1.46385        15 
       2.00  14.0000 1.46385        15 
       Total 13.0000 1.76166        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       
 a               .000            2  .000        .000     1.000 

 b               30.000          1  30.000      12.000   .002  

 a * b           .000            2  .000        .000     1.000 
 Error           60.000          24 2.500                      
 Corrected Total 90.000          29 

GLM y4 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  11.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 12.0000 1.82574        10 

 2.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 3.00  1.00  13.0000 1.58114        5  
       2.00  15.0000 1.58114        5  
       Total 14.0000 1.82574        10 

 Total 1.00  12.0000 1.69031        15 
       2.00  14.0000 1.69031        15 
       Total 13.0000 1.94759        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       

 a               20.000          2  10.000      4.000    .032  

 b               30.000          1  30.000      12.000   .002  

 a * b           .000            2  .000        .000     1.000 
 Error           60.000          24 2.500                      
 Corrected Total 110.000         29                            
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GLM y5 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  14.0000 1.58114        5  
       2.00  12.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 2.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 3.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 Total 1.00  13.0000 1.69031        15 
       2.00  13.0000 1.69031        15 
       Total 13.0000 1.66091        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       
 a               .000            2  .000        .000     1.000 
 b               .000            1  .000        .000     1.000 

 a * b           20.000          2  10.000      4.000    .032  

 Error           60.000          24 2.500                      
 Corrected Total 80.000          29

GLM y6 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  13.0000 1.58114        5  
       2.00  11.0000 1.58114        5  
       Total 12.0000 1.82574        10 

 2.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 3.00  1.00  13.0000 1.58114        5  
       2.00  15.0000 1.58114        5  
       Total 14.0000 1.82574        10 

 Total 1.00  13.0000 1.46385        15 
       2.00  13.0000 2.23607        15 
       Total 13.0000 1.85695        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       

 a               20.000          2  10.000      4.000    .032  

 b               .000            1  .000        .000     1.000 

 a * b           20.000          2  10.000      4.000    .032  

 Error           60.000          24 2.500                      
 Corrected Total 100.000         29                            
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GLM y7 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  13.0000 1.58114        5  
       2.00  13.0000 1.58114        5  
       Total 13.0000 1.49071        10 

 2.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 3.00  1.00  11.0000 1.58114        5  
       2.00  15.0000 1.58114        5  
       Total 13.0000 2.58199        10 

 Total 1.00  12.0000 1.69031        15 
       2.00  14.0000 1.69031        15 
       Total 13.0000 1.94759        30 

 Source          Type III Sum of df Mean Square F        Sig.  
                 Squares                                       
 a               .000            2  .000        .000     1.000 

 b               30.000          1  30.000      12.000   .002  

 a * b           20.000          2  10.000      4.000    .032  

 Error           60.000          24 2.500                      
 Corrected Total 110.000         29

GLM y8 BY a b /PRINT = DESCR.

 a     b     Mean    Std. Deviation N  
 1.00  1.00  12.0000 1.58114        5  
       2.00  12.0000 1.58114        5  
       Total 12.0000 1.49071        10 

 2.00  1.00  12.0000 1.58114        5  
       2.00  14.0000 1.58114        5  
       Total 13.0000 1.82574        10 

 3.00  1.00  12.0000 1.58114        5  
       2.00  16.0000 1.58114        5  
       Total 14.0000 2.58199        10 

 Total 1.00  12.0000 1.46385        15 
       2.00  14.0000 2.23607        15 
       Total 13.0000 2.11725        30 

 Source          Type III Sum of df Mean Square F        Sig. 
                 Squares                                      

 a               20.000          2  10.000      4.000    .032 

 b               30.000          1  30.000      12.000   .002 

 a * b           20.000          2  10.000      4.000    .032 

 Error           60.000          24 2.500                     

 Corrected Total 130.000         29                           
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APPENDIX 4-4: SAMPLE SIZE & SIGNIFICANCE

The distraction study only had three subjects per condition, which is a very small sample size for any

study. Small samples have been used to facilitate calculations and save paper (e.g., for listing data), but

sample size is a very important consideration when it comes to significance. With three subjects per cell, the

Type by Volume interaction was only marginally significant, p = .052. If we double the sample size to 6

participants per cell, the interaction is now highly significant, p = .00027 (.000 in output). See below.

An important issue in research design is sample size. A very weak (i.e., small) effect may require

many subjects for the results to be statistically significant. Or weak effects may benefit from Within-S

designs, as discussed in later chapters.

DATA LIST FREE / typ vol mis.

BEGIN DATA

1 1 1 1 1 4 1 1 7 1 1 1 1 1 4 1 1 7

1 2 4 1 2 2 1 2 3 1 2 4 1 2 2 1 2 3

1 3 5 1 3 7 1 3 3 1 3 5 1 3 7 1 3 3

1 4 3 1 4 5 1 4 4 1 4 3 1 4 5 1 4 4

2 1 3 2 1 2 2 1 1 2 1 3 2 1 2 2 1 1

2 2 5 2 2 2 2 2 8 2 2 5 2 2 2 2 2 8

2 3 10 2 3 9 2 3 8 2 3 10 2 3 9 2 3 8

2 4 6 2 4 10 2 4 8 2 4 6 2 4 10 2 4 8

END DATA.

GLM mis BY typ vol.

Dependent Variable:   mis  

Source

Type III Sum of

Squares df Mean Square F Sig.
typ 48.000 1 48.000 16.000 .000
vol 120.000 3 40.000 13.333 .000
typ * vol 72.000 3 24.000 8.000 .000
Error 120.000 40 3.000
Corrected Total 360.000 47
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Box 5-1. Calculation of post hoc t

CHAPTER 5 - FOLLOW-UP ANALYSES FOR FACTORIAL ANOVA

Main effects with dfNumerator  > 1 and interactions, even with df = 1, often require follow-up analyses to

determine the specific nature of the differences among means. These follow-up analyses can be post hoc (e.g.,

all possible pairwise comparisons) or planned. Chapter 5 covers follow-up analyses for the main effects and

one approach to the interaction, simple effects analysis. Further follow-up analyses for interactions are

covered in Chapter 6.

Post Hoc Comparisons for Main Effects

Below are MANOVA results for the study examining interference by noise or speech (typ) as a

function of loudness (vol). Null hypotheses for the main effects are both rejected. For the main effect of typ,

df = 1, and therefore the difference must be between the mean for noise, y&&Noise = 4.0, and the mean for speech,

y&&Speech = 8.0; that is, reject H0: μNoise=μSpeech. Speech produced more interference than noise and no further tests

are needed. The presence of a marginal interaction, however, should lead us to be cautious about our

conclusions for this main effect because the difference between noise and speech may be greater for some

levels of the loudness factor. The presence of an interaction complicates interpretation of main effects and

generally calls for additional analyses, which are examined later.

Follow-up comparisons are helpful for the vol effect given the vague conclusion that one or more of

the null hypothesis equalities is false (H0: μ1 = μ2 = μ3 = μ4). There are many ways this H0 could be false. We

need further analysis of variation among the means: y&&1 =  3.0, y&&2 = 4.0, y&&3 = 7.0, y&&4 = 6.0.

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              60.00      16      3.75
 typ                       24.00       1     24.00      6.40      .022
 vol                       60.00       3     20.00      5.33      .010
 typ BY vol                36.00       3     12.00      3.20      .052

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83

The calculation of t and q for the post hoc tests is similar for the

single factor and factorial Between-S designs. The major difference is that

nj for each mean is based on the number of participants at that level of vol,

summed over levels of the other factor. That is, nj is the number of

observations or scores in the means being compared. In the present case with three scores per cell and two

levels of typ, nj = 3+3 = 6 for each level of vol. Box 5-1 shows the calculation of t for the largest difference
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Box 5-2. Calculation of post hoc q

between means, namely group 1 versus 3. Box 5-2 shows the corresponding calculation for q. For Between-S

factorial analyses, MSE from the omnibus ANOVA is used as the standard error.

For the LSD test, the critical value of t for df = 16 is 2.120;

therefore, H0: μ1 = μ3 is rejected. Equivalently, the critical value of q

for stretch = 2 is 3.00 (i.e., tCritical × %2), leading to the same

conclusion. As for single factor post hoc tests, it helps to lay out the means in a table with rows and columns

ordered from the lowest to highest mean. Observed statistics are entered below (these are ts).

Vol 1 2 4 3

y&&V 3.0 4.0 6.0 7.0

1 3.0 - 0.894 2.683L 3.578L 1 2 4 3

2 4.0 - 1.789 2.683L -------- --------

4 6.0 - 0.894 ---------

3 7.0 -

The summary to the right shows that adjacent groups (12, 24, 43) do not differ significantly; the other

three differences (14, 13, 23) are significant. This is a messy conclusion because 1 = 2, 2 = 4, and 4 = 3, but 1

… 4 or 3, and 2 …3. The qs are shown below and lead to the same conclusion with stretch = 2.

Vol 1 2 4 3
y&&V 3.0 4.0 6.0 7.0 Str qα

1 3.0 - 1.264 3.793LS5.057LST 4 4.05
2 4.0 - 2.528 3.793LS 3 3.65
4 6.0 - 1.264 2 3.00
3 7.0 -

Summaries 1 2 4 3
LSD & SNK ---------- ----------

----------

Tukey -------------------
-------------------

For the Tukey procedure, the stretch of 4 is used for all comparisons. Only the largest difference is

significant, that between groups 3 and 1. As shown in the summary, one subset of groups that do not differ

significantly contains groups 1, 2, and 4, and a second subset of groups that do not differ significantly

contains groups 2, 4, and 3. Five of the comparisons are not significant: 12, 14, 24 from subset one and 24

(again), 23, and 43 from subset two. Only the 1 vs 3 comparison is significant. This is an awkward

conclusion because 1 = 2 = 4 and 2 = 4 = 3, but 1 … 3.

The significance of qs for the SNK procedure requires three critical values, one benefit of arranging

the comparisons as above. A stretch of 2 and critical q = 3.00 is used for the three adjacent comparisons that
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span only two groups when means are ordered: 12, 24, 43. Observed qs for these comparisons are on the

diagonal: 1.264, 2.525, and 1.264. They are not significant. A stretch of 3 and critical q = 3.65 is used for 14

and 23, which span three groups. The observed qs for these comparisons appear immediately up from the

diagonal: 3.793 and 3.793. Both are significant. Finally, q = 5.057 for the comparison spanning all four

groups, 13, is in the upper right corner, and is significant.

In practice, SNK tests are done starting with the upper right cell, working left and down, and stopping

when a nonsignificant comparison occurs. That is, first test 5.057, which is significant, so continue to 3.793

to its left. This comparison is significant, so continue to the next cell to the left, which is not significant.

Notice if the 3.793 was not significant and we had tested the next cell, it is possible that its value would

exceed 3.00, the lower critical value of q for that cell. For example, the q for the 12 comparison could have

been 3.20. Stopping at the first nonsignificant result on a row avoids the paradox of a smaller difference

being significant when a larger one is not.

After stopping in the first row, start at the right of the second row because the comparison above is

significant, and continue in the same manner. The right-most entry in row two (q23 = 3.793) is significant, but

the next entry to the left is not. Because the 23 comparison was significant, test the cell below that; if the 23

comparison was not significant, we would not test the cell below because it could be significant despite

involving a smaller difference between means. In the present study, the SNK procedure leads to the same

conclusions as the LSD procedure.

The Bonferroni procedure is difficult without computer assistance.  We would need critical values for

t (or q) for α = .05/6 = .0083, which is not generally found in tables. SPSS could be used to generate these

critical values. Alternatively, we can obtain the exact p values for the t statistic (or q with stretch = 2) and

compare them to .0083, or equivalently, compare 6 × pLSD to .05.

The GLM below performs the four tests and the results correspond to the preceding calculations: SE =

1.118 (the denominator for the t test), the same pairwise comparisons are significant, and the Homogeneous

Subsets of groups that do not differ significantly are identical to our underlined summaries. Also the

Bonferroni p values correspond to the LSD p values multiplied by the number of comparisons, 6, and the

tests become more conservative from LSD, to SNK, to TUKEY, to Bonferroni.
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Box 5-3. Contrast Formula

GLM  mis  BY typ vol  /POSTHOC = vol ( LSD SNK TUKEY BONFERRONI ).

...
            (I)    (J)    Mean Difference Std.      Sig. 
            vol    vol    (I-J)           Error          
 LSD        1.0000 2.0000 -1.000000       1.1180340 .384 
                   3.0000 -4.000000(*)    1.1180340 .003 
                   4.0000 -3.000000(*)    1.1180340 .016 
            2.0000 3.0000 -3.000000(*)    1.1180340 .016 
                   4.0000 -2.000000       1.1180340 .093 
            3.0000 4.0000 1.000000        1.1180340 .384 

 Tukey HSD  1.0000 2.0000 -1.000000       1.1180340 .808 
                   3.0000 -4.000000(*)    1.1180340 .012 
                   4.0000 -3.000000       1.1180340 .070 
            2.0000 3.0000 -3.000000       1.1180340 .070 
                   4.0000 -2.000000       1.1180340 .314 
            3.0000 4.0000 1.000000        1.1180340 .808 

 Bonferroni 1.0000 2.0000 -1.000000       1.1180340 1.000
                   3.0000 -4.000000(*)    1.1180340 .015 
                   4.0000 -3.000000       1.1180340 .098 
            2.0000 3.0000 -3.000000       1.1180340 .098 
                   4.0000 -2.000000       1.1180340 .556 
            3.0000 4.0000 1.000000        1.1180340 1.000

Homogeneous Subsets
                          1        2        3        
 Student-Newman- 1.0000 6 3.000000                   
 Keuls(a,b,c)    2.0000 6 4.000000 4.000000          
                 4.0000 6          6.000000 6.000000 
                 3.0000 6                   7.000000 
                 Sig.     .384     .093     .384     

 Tukey           1.0000 6 3.000000                   
 HSD(a,b,c)      2.0000 6 4.000000 4.000000          
                 4.0000 6 6.000000 6.000000          
                 3.0000 6          7.000000          
                 Sig.     .070     .070              

Although all four post hoc tests are shown for learning purposes, in practice researchers decide how

conservative to be prior to seeing the results and use only the post hoc procedure that provides the desired

control of a Type I error across all comparisons. Post hoc tests also require that the omnibus F be significant

for the factor being examined. Here, vol was significant.

The post hoc procedures did not lead to a tidy conclusion about the relationship between vol and

mistakes, nor do pairwise comparisons allow for more sophisticated hypotheses to be tested. It might

reasonably be expected, for example, that mistakes would increase as volume increased. This linear contrast

can be tested using a priori or planned comparisons.

A Priori or Planned Comparisons for Main Effects

Planned comparisons are calculated much as for the single

factor design (see Box 5-3), but again using the appropriate n in the
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Box 5-4. Calculation of t-test for Linear contrast

calculations. The proper n will depend on the number of observations per cell, and the number of cells across

which the main effects are averaged. As for single factor designs, planned comparisons can be carried out

even if the omnibus F for the main effect is not significant. Polynomial planned comparisons for vol are

calculated below given volume is an ordered factor. MSError = 3.75 from the omnibus ANOVA.

Vol 1 2 3 4
y&&V 3.0 4.0 7.0 6.0   L    SS = nv×L

2/Gcj
2   F

Linear -3 -1 +1 +3 12.0 43.20 = 6×122/20 11.52
Quadratic +1 -1 -1 +1 -2.0  6.00    1.60
Cubic -1 +3 -3 +1 -6.0 10.80    2.88

  G = 60.00 = SSVol    F&& = 5.333 = FVol

With df = 1, 16 and alpha = .05, FCritical = 4.49. We reject the null hypothesis of no linear relationship

between mistakes and volume, and conclude there is a linear relationship. Specifically, mistakes increase

significantly as volume increases. If a directional test were appropriate because an increase in mistakes was

predicted and not a decrease, then we could justify using FCritical = 3.05 (i.e., F for a = .10) and dividing the

observed p value by two. The quadratic and cubic effects are not significant.

Given k - 1 orthogonal contrasts, SSs for the contrasts sum to SS for the main effect and the mean of

the Fs equals the omnibus F. These relationships illustrate why planned contrasts can be significant even

when the omnibus F is not. Instead of dividing SS = 60.0 equally across df = 3, planned contrasts allow much

of the variability to load on a single df, producing a larger MSNumerator and larger F. Moreover, the critical

value of F for df = 1, 16 is less than the critical value for df = 3, 16.

Contrasts can also be

tested for significance using

the t-test in Box 5-4. The

conclusions are identical as

the tests are equivalent.

Recall that SPSS sometimes normalizes contrasts or performs some other transformation. Here are

calculations for the linear contrast using normalized coefficients; that is, integer coefficients divided by %Gcj
2

= %20. The sum of normalized coefficients squared is 1.0, which is the denominator for the calculation of

SSLin. The corresponding t-test using normalized coefficients equals that in Box 5-4.

L SS

Linear -.6708   -.2236    .2236    .6708 2.6832 43.20 = 6×2.68322

. 12.0/%20
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SPSS and Planned Contrasts for Main Effects

As with the single factor design, SPSS provides diverse ways to perform contrasts. The first analysis

uses MANOVA and the SINGLEDF option. In the summary table, the main effect of vol is partitioned into

linear (1st parameter), quadratic, and cubic components because POLYNOMIAL is stated as the contrast.

Only the linear contrast is significant. T-tests that correspond to the single df F tests appear following the

summary table. Note that the values given for L and SE are normalized coefficients, rather than the integer

values we used initially. The conclusions are the same. SINGLEDF also partitions the type by volume

interaction, which is examined later.

MANOVA mis BY typ(1 2) vol(1 4) /CONTRAST(vol) = POLY /PRINT = SIGNI(SINGLEDF).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              60.00      16      3.75
 typ                       24.00       1     24.00      6.40      .022

 vol                       60.00       3     20.00      5.33      .010

   1ST Parameter           43.20       1     43.20     11.52      .004

   2ND Parameter            6.00       1      6.00      1.60      .224

   3RD Parameter           10.80       1     10.80      2.88      .109

 typ BY vol                36.00       3     12.00      3.20      .052
   1ST Parameter           30.00       1     30.00      8.00      .012
   2ND Parameter            6.00       1      6.00      1.60      .224
   3RD Parameter             .00       1       .00       .00     1.000

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83

typ
  Parameter           Coeff.    Std. Err.          t-Value           Sig. t
        2      -1.0000000000       .39528         -2.52982           .02229

 vol

  Parameter           Coeff.    Std. Err.          t-Value           Sig. t

        3       2.6832815730       .79057          3.39411           .00371

        4      -1.0000000000       .79057         -1.26491           .22402

        5      -1.3416407865       .79057         -1.69706           .10905

 typ BY vol
  Parameter           Coeff.    Std. Err.          t-Value           Sig. t
        6      -2.2360679775       .79057         -2.82843           .01211
        7       1.0000000000       .79057          1.26491           .22402
        8        .0000000000       .79057           .00000          1.00000

The next analysis shows GLM results for POLYNOMIAL contrasts. The results agree with earlier

analyses and again show normalized coefficients. This is important to remember if SSs are calculated by

hand, as shown below. Note that njL
2 is not divided by 3c2

j (technically it is divided by 1.0). The ANOVA

that follows with df = 3 is redundant with the main effect.
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GLM mis BY typ vol /CONTRAST(vol) = POLY.

...
Custom Hypothesis Tests

 Linear         Contrast Estimate           2.683    SS = 6 × 2.6832 = 43.19

                Std. Error                  .791 t = 2.683/.791 = 3.392

                Sig.                        .004            
 Quadratic      Contrast Estimate           -1.000          
                Std. Error                  .791            
                Sig.                        .224            
 Cubic          Contrast Estimate           -1.342          
                Std. Error                  .791            
                Sig.                        .109            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 60.000         3  20.000      5.333 .010 

 Error    60.000         16 3.750                  

Modifying GLM to specify separate integer contrasts produces the following results. Now the

contrasts correspond to our calculations, and the ANOVAs provide SSContrast for each contrast. These SSs

show the partitioning of SSVol and allow for calculating η2 for each contrast.

GLM mis BY typ vol /CONTRAST(vol) = SPECIAL(-3 -1  1  3)

 /CONTRAST(vol) = SPECIAL( 1 -1 -1  1)

 /CONTRAST(vol) = SPECIAL(-1  3 -3  1).

...
Custom Hypothesis Tests #1

 L1          Contrast Estimate           12.000 SS = 6×12.02/20 = 43.2

             Std. Error                  3.536 t = 12.0/3.536 = 3.394

             Sig.                        .004            

 Source   Sum of Squares df Mean Square F      Sig. 
 Contrast 43.200         1  43.200      11.520 .004 
 Error    60.000         16 3.750                   

Custom Hypothesis Tests #2
 L1          Contrast Estimate           -2.000          
             Std. Error                  1.581           
             Sig.                        .224            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 6.000          1  6.000       1.600 .224 
 Error    60.000         16 3.750                  

Custom Hypothesis Tests #3
 L1          Contrast Estimate           -6.000          
             Std. Error                  3.536           
             Sig.                        .109            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 10.800         1  10.800      2.880 .109 
 Error    60.000         16 3.750                  

Although polynomial contrasts make sense for Volume, other planned contrasts are possible. Prior

research or theory might indicate that sounds below a certain threshold are minimally distracting, whereas

sounds above the threshold interfere and lead to more mistakes. For a threshold between volumes 2 and 3,
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appropriate contrasts might be as follows (t-test results have been deleted). The first contrast (1&2 vs 3&4)

captures more variability than the linear contrast (54.0 vs 43.2).

MANOVA mis BY typ(1 2) vol(1 4)

 /CONTRAST(vol) = SPECIAL(1 1 1 1  -1 -1 1 1  -1 1 0 0  0 0 -1 1)

 /DESIGN typ vol(1) vol(2) vol(3) typ BY vol.

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00      16      3.75
 TYP                       24.00       1     24.00      6.40      .022

 VOL(1)                    54.00       1     54.00     14.40      .002

 VOL(2)                     3.00       1      3.00       .80      .384
 VOL(3)                     3.00       1      3.00       .80      .384
 TYP BY VOL                36.00       3     12.00      3.20      .052

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83

Three final observations about main effects. First, it is possible to carry out main effect contrasts by

using the cell means, rather than row or column means. The contrast coefficients are repeated for each level

of the other factor and nj is adjusted accordingly. Here are calculations for the linear contrast.

Noise Speech
1 2 3 4 1 2 3 4

y&&ab 4.0 3.0 5.0 4.0 2.0 5.0 9.0 8.0 L
Lin -3 -1 1 3 -3 -1 1 3 24.0

SSLinear = 3 × 24
2/40 = 43.20

In essence the main effect contrast tests whether the linear pattern relating mistakes to volume is the

same for both levels of type and is significant averaged over type. The “averaging” was done earlier by using

column means averaged over the Noise and Speech conditions, and is done here by calculating the contrast

coefficient L with the same linear coefficients repeated for the Noise and Speech conditions.

The second point is that some contrasts, but not all, can be conceptualized as differences between

means or variability among means averaged over groups. To illustrate, consider the -1 -1 +1 +1 contrast

shown in the preceding MANOVA. Contrast calculations can be done as follows.

Vol 1 2 3 4
y&&V 3.0 4.0 7.0 6.0 L SS = nj × L

2 / Gcj
2

C12v34 -1 -1 +1 +1 6.0 54.0 = 6 × 62 /4

Alternatively, we could group means coded the same on contrasts and calculate SS for the difference

between the means, as shown below.

1&2 3&4
y&&V 3.50 6.50 y&&G = 5.0
nj 12 12 N = 24

      y&&V - y&&G -1.50 +1.50
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SS = 12(-1.502 + 1.502) = 54.0

Here is a second example where contrast coefficients correspond to a difference between means.

When would this contrast be appropriate? What orthogonal contrasts are possible?

Vol 1 2 3 4
y&&V 3.0 4.0 7.0 6.0 L SS = nj x L

2 / Gcj
2

C1v234 -3 +1 +1 +1 8.0 32.0 = 6 x 82 /12

1 2&3&4
y&&V 3.0 5.667 y&&G = 5.0
nj 6 18 N = 24

      y&&V - y&&G -2.0 +.667

SS = 6 × -2.02 + 18 × .6672 = 32.0

One final observation. GLM can test contrasts using the /LMATRIX option but the main effect

contrast must also be coded along with the interaction, similar to what was just done with contrasts using cell

means. The initial part of the command is straightforward; /LMATRIX is followed by the name of the factor

and then the contrast coefficients. Ideally this would work, but it does not. SPSS would report that the L

Matrix is not estimable and produce blank results. 

GLM requires that the contrast be repeated for the interaction term as well. So factor BY factor is

followed by the coefficients again, but now divided by the number of levels of the other factor (typ has two

levels here). As examined more later, it is also critical that the initial GLM command (i.e., GLM mis BY typ

vol) specify the factors in the correct order or the analysis will either not run or provide incorrect results. That

is, BY typ vol differs from BY vol typ. If one gets over all these hurdles, the results will agree with those

obtained earlier, as shown below.

GLM mis BY typ vol /LMATRIX vol        -3   -1    1    3

                            vol BY typ -3/2 -1/2  1/2  3/2

                                       -3/2 -1/2  1/2  3/2.

...
Custom Hypothesis Tests
 L1       Contrast Estimate           12.000          
          Std. Error                  3.536           
          Sig.                        .004            

 Source   Sum of Squares df Mean Square F      Sig. 
 Contrast 43.200         1  43.200      11.520 .004 
 Error    60.000         16 3.750

This concludes follow-up analyses for the main effects of a factorial design. We next examine one

approach to follow-up analyses for interactions, simple effects.

Follow-Up Analyses for Interactions: Simple Effects
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When an interaction is predicted, follow-up analyses will determine whether the interaction

corresponds to the expected pattern. Even when no interaction is predicted, follow-up analyses may be called

for when the interaction effect is significant, or sometimes when it is marginally significant as in the present

study with p = .052 for the typ by vol interaction. Marginally significant interactions warrant closer

examination because the omnibus F for interactions is not very sensitive except for cross-over interactions

where there are no main effects. That is, one factor has opposite effects across levels of the other factor. This

is seldom the only pattern of interest. When the interaction is not pure cross-over, some of the variability due

to the interaction will be allocated to one or both main effects.

There are two approaches to follow-up analyses of the interaction. One approach examines the effects

of one factor within levels of the other factor; for example, the effect of Type at each of the four levels of

Volume, or the effect of Volume at each level of Type. This is called a simple effects analysis. A second

approach described in Chapter 6 partitions the interaction into planned components.

One way to conceptualize the simple effects analysis is as a single factor ANOVA repeated at each

level of the other factor. That is, each level of one factor is treated as a separate study, except that MSError

from the omnibus ANOVA is the denominator when all factors are Between-S. To calculate SS for simple

effects, cell means are subtracted from row or column means, depending on which simple effect analysis is

done. Row and column means function as the grand mean. Here are calculations for the simple effect of

volume within levels of type.

Volume (B)

Type (A) 1. 2. 3. 4. y&&a

  1. Noise

y&&ab 4.0 3.0 5.0 4.0 y&&1. 4.0

y&&ab-y&&1. 0.0 -1.0 +1.0 0.0 SSVwN = 3(02+-12+12+02) = 6.0

df = 4 - 1 = 3

  2. Speech

y&&ab 2.0 5.0 9.0 8.0 y&&2. 6.0

y&&ab-y&&2. -4.0 -1.0 +3.0 +2.0 SSVwS = 3(-42+-12+32+22)= 90.0

df = 4 - 1 = 3

Clearly the effect of volume on mistakes is much stronger for Speech as shown by earlier graphs.

There is little variability among the four means for the Noise stimuli. Indeed, the F for Noise is not

significant, whereas that for Speech is (FCritical = 3.24). The “w” in “VwN” stands for “Within.” Simple effects

tests the effect of one factor within the levels of the other factor.

FVwN = (6.0/3)/3.75 = 2.0/3.75 = .5333 Do not reject H0: μ11 = μ12 = μ13 = μ14

FVwS = (90.0/3)/3.75 = 30.0/3.75 = 8.00 Reject H0: μ21 = μ22 = μ23 = μ24
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SSTotal

SSBwA(1)

SSB+AB

SSErrorSSABSSBSSA

SSBwA(2) … SSBwA(A)

Box 5-5. Alternative Partitioning for

Default and Simple Effects Analyses.

Both MANOVA and GLM include methods to carry out simple effects analyses. MANOVA uses the

/DESIGN option with the term WITHIN (or just W) to define the simple effect of one factor at each level of

the other factor. The following commands request that SSTotal be partitioned into SSTyp, SSVwT(1), and SSVwT(2).

On the design option, typ(1) following WITHIN refers to level one of the typ factor (i.e., the Noise

condition), and typ(2) refers to level two of typ (i.e., the Speech condition). SSs agree with our calculations

and the effect of vol is significant only for the Speech condition.

MANOVA mis BY typ(1 2) vol(1 4)   /DESIGN typ vol WITHIN typ(1) vol WITHIN typ(2).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00      16      3.75
 TYP                       24.00       1     24.00      6.40      .022

 VOL WITHIN TYP(1)          6.00       3      2.00      .53      .666

 VOL WITHIN TYP(2)         90.00       3     30.00      8.00      .002

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83

The simple effects analysis does not partition the interaction.

Rather, simple effects analyses are an alternative to the default

partitioning into SST, SSV, and SSTV. Specifically, simple effects

analyses partition variability among the means into the main effect for

one factor and the simple effects for the other factor. The bottom cells

in Box 5-5 show the alternative partitioning. The present analysis, for

example, involves the main effect of typ and simple effects of vol at

each of two levels of typ. The simple effects analysis for typ within vol

involves a main effect for vol and simple effects for typ at each level of vol. In general,

SSTotal = SSA + SSB + SSAxB + SSE = SSA + SSBwA(1) + SSBwA(2) ... + SSBwA(A) + SSE

Therefore, SSBwA(1) ... + SSBwA(A) = SSB + SSAxB

In the present study,

SSVwT(1) + SSVwT(2) = 6.0 + 90.0 = 96.0 = SSV + SSTxV = 60.0 + 36.0

dfVwT(1) + dfVwT(2) = 3 + 3 = 6 = dfV + dfTxV = 3 + 3

Some statisticians object to simple effects analyses because main effects and interaction are

confounded, as shown above and in Box 5-5. But in many cases, simple effects provide a more sensible

approach to the interaction than the standard interaction effect. Here, for example, we have markedly

different effects of volume for Noise and Speech despite the interaction effect being only marginally
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significant (p = .052). The omnibus F for the interaction is marginal because variability due mostly to the

simple effect for Speech is attributed to main effects and not just to the interaction.

Simple effects analyses in SPSS must be done carefully. In particular, only the full partitioning shown

in Box 5-5 will ensure that the correct error term is used. The MANOVA shown above includes the main

effect of type as well as the two simple effects. This guarantees that MSError = 3.75 = MSError from the factorial

ANOVA. The following (incorrect) analysis shows that when the main effect of type is omitted, MSError =

4.94, which includes SSType and its df = 1. So the /DESIGN statement must be specified correctly or other

approaches used to ensure the correct error term.

MANOVA mis BY typ(1 2) vol(1 4)   /DESIGN vol WITHIN typ(1) vol WITHIN typ(2).

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN+RESIDUAL           84.00      17      4.94 Wrong Error Term!!

 VOL WITHIN TYP(1)          6.00       3      2.00       .40      .751
 VOL WITHIN TYP(2)         90.00       3     30.00      6.07      .005

GLM uses the /EMMEANS or the /LMATRIX options to conduct simple effects analyses. The

Estimated Marginal Means option calculates means for main effects or factorial cells using the

TABLE(factor) or TABLE(factor BY factor) subcommand. Following the factorial version,

COMPARE(factor) produces the simple effects result. In addition, COMPARE performs pairwise

comparisons between levels of the simple effects factor within levels of the other factor, as seen below.

GLM mis BY typ vol /EMMEANS TABLE(typ BY vol) COMPARE(vol).

...
Estimated Marginal Means
typ * vol
Pairwise Comparisons
 typ    (I)    (J)    Mean Difference Std.  Sig.(a)
        vol    vol    (I-J)           Error        
                                                   
 1.0000 1.0000 2.0000 1.000           1.581 .536
               3.0000 -1.000          1.581 .536

               4.0000 .000            1.581 1.000 No pairwise comparisons

        2.0000 3.0000 -2.000          1.581 .224 significant for Noise
               4.0000 -1.000          1.581 .536
        3.0000 4.0000 1.000           1.581 .536

 2.0000 1.0000 2.0000 -3.000          1.581 .076 NS

               3.0000 -7.000(*)       1.581 .000 Sig.

               4.0000 -6.000(*)       1.581 .002 Sig.

        2.0000 3.0000 -4.000(*)       1.581 .022 Sig.

               4.0000 -3.000          1.581 .076 NS

        3.0000 4.0000 1.000           1.581 .536 NS
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 typ             Sum of Squares df Mean Square F     Sig. 
 1.0000 Contrast 6.000          3  2.000       .533  .666 
        Error    60.000         16 3.750                  

 2.0000 Contrast 90.000         3  30.000      8.000 .002 

        Error    60.000         16 3.750

The final summary tables show simple effects results identical to those calculated and produced by

MANOVA. The pairwise comparisons shown above the summary tables do not adjust for the number of

comparisons within a level of typ, and correspond to LSD tests. For the Noise condition, none of the

differences are significant, not surprising since the omnibus F is far from significant. For the Speech

condition, level 1 differs significantly from 3 and 4, 2 differs from 3, 1 and 2 are marginally different, as are 2

and 4; 3 and 4 do not differ significantly. Reported as subsets of conditions not differing significantly, the

results could be summarized as:

1 2 4 3

Noise ----------------------------

Speech ---------- ----------

----------

EMMEANS can produce Bonferroni p values by following COMPARE with ADJ(BONFERRONI);

the values would be 6 times the p values reported above. Other post hoc procedures are not available,

although the statistics above could be used to calculate ts, which could be multiplied by %2 to produce qs that

could be compared to appropriate critical values for the SNK and Tukey tests. For example, t12 = 3.00/1.581 =

1.898, and q12 = 1.898×%2 = 2.684.

Planned comparisons for simple effects are considered in Chapter 6, along with partitioning the

interaction, a second approach to follow-up analyses for interactions.
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CHAPTER 6 - MORE ON FOLLOW-UP ANALYSIS OF INTERACTIONS

The final topics for follow-up analyses of Between-S factorials are planned comparisons for simple

effects and partitioning the interaction.

Planned Comparisons for Simple Effects

Rather than post hoc comparisons, simple effects analyses can be followed by planned comparisons.

Although these can be calculated ignoring one level of the other factor, there is a conceptual benefit to

including all cells and using 0s for some coefficients, as shown below. Recall that calculation of the linear

contrast for the main effect using cell means repeated the linear coefficients for the Noise and Speech

conditions. For simple effects contrasts, 0s are used for one level of the second factor. Calculations are shown

for the linear effect of volume within the Speech condition using our standard formula for contrasts and the

appropriate nj for each cell mean; here nj = 3.

  Noise Speech
1 2 3 4 1 2 3 4

y&&ab 4.0 3.0 5.0 4.0 2.0 5.0 9.0 8.0 L SS
Vol Within Noise

Lin -3 -1  1 3 0 0 0 0
Qua  1 -1 -1 1 0 0 0 0
Cub -1  3 -3 1 0 0 0 0

Vol Within Speech
Lin 0 0 0 0 -3 -1 1 3 22.0 72.60 = 3×222/20
Qua 0 0 0 0  1 -1 -1 1
Cub 0 0 0 0 -1  3 -3 1

Planned comparisons for simple effects are easier in MANOVA than GLM. In MANOVA, specifying

the contrasts produces default t-test results, and with other SPSS commands also partitions the SSs for the

simple effects and reports Fs.

In the following analysis, the 1st, 2nd, and 3rd parameters in the summary table refer to the Linear,

Quadratic, and Cubic contrasts within levels of the typ factor. SS for the Linear effect of vol within typ(2)

(i.e., Speech) agrees with our calculations and is highly significant, F = 19.36, p = .000. None of the effects

for vol within typ(1) (i.e., Noise) are close to significant. The following t-tests are redundant with the F tests,

but show again that MANOVA uses normalized contrast coefficients since the Parameter 6 coefficient of

4.9193 equals our L of 22.0 divided by %20, which is %'cj
2.
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MANOVA mis BY typ(1 2) vol(1 4) /CONTRAST(vol) = POLY /PRINT = SIGNI(SINGLEDF)

  /DESIGN typ vol WITHIN typ(1) vol WITHIN typ(2).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00      16      3.75
 TYP                       24.00       1     24.00      6.40      .022
 VOL WITHIN TYP(1)          6.00       3      2.00       .53      .666
   1ST Parameter             .60       1       .60       .16      .694
   2ND Parameter             .00       1       .00       .00     1.000
   3RD Parameter            5.40       1      5.40      1.44      .248
 VOL WITHIN TYP(2)         90.00       3     30.00      8.00      .002

   1ST Parameter           72.60       1     72.60     19.36      .000

   2ND Parameter           12.00       1     12.00      3.20      .093
   3RD Parameter            5.40       1      5.40      1.44      .248
...
 VOL WITHIN TYP(2)
  Parameter           Coeff.     Std. Err.   t-Value     Sig. t

        6       4.9193495505       1.11803    4.40000    .00045

        7      -2.0000000000       1.11803   -1.78885    .09259
        8      -1.3416407865       1.11803   -1.20000    .24761

Contrast effects can also be specified on the /DESIGN option. The following analyis performs the

polynomial analysis using the /DESIGN statement, but now with integer coefficients rather than

POLYNOMIAL. Numbers in brackets after vol refer to linear, quadratic, and cubic contrasts. Numbers after

typ refer to levels of the factor. For example, “vol(1) W typ(2)” denotes the linear effect of vol for the second

level of typ (i.e., Speech). The integer contrast coefficients produce an L that corresponds to our earlier

calculations, whereas POLYNOMIAL led to a normalized value. T-tests for the Noise contrasts are deleted.

MANOVA mis BY typ(1 2) vol(1 4)

 /CONTRAST(vol) = SPECIAL(1 1 1 1  -3 -1 1 3  1 -1 -1 1  -1 3 -3 1)

 /DESIGN typ vol(1) W typ(1) vol(2) W typ(1)  vol(3) W typ(1)

             vol(1) W typ(2) vol(2) W typ(2)  vol(3) W typ(2).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00      16      3.75
 TYP                       24.00       1     24.00      6.40      .022
 VOL(1) W TYP(1)             .60       1       .60       .16      .694
 VOL(2) W TYP(1)             .00       1       .00       .00     1.000
 VOL(3) W TYP(1)            5.40       1      5.40      1.44      .248

 VOL(1) W TYP(2)           72.60       1     72.60     19.36      .000

 VOL(2) W TYP(2)           12.00       1     12.00      3.20      .093
 VOL(3) W TYP(2)            5.40       1      5.40      1.44      .248
...
 VOL(1) W TYP(2)
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t

        6      22.0000000000          5.00000          4.40000           .00045

 VOL(2) W TYP(2)
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t
        7      -4.0000000000          2.23607         -1.78885           .09259
 VOL(3) W TYP(2)
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t
        8      -6.0000000000          5.00000         -1.20000           .24761

The following analysis shows results for a set of contrasts consistent with a threshold model; that is,

sounds louder than level 2 will affect performance. Numbers in parentheses after vol and before W again refer
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to contrasts, but now vol(1) refers to contrast -1 -1 1 1. Numbers after W (WITHIN) and typ again refer to the

levels of that factor; that is, typ(1) refers to the Noise condition.

MANOVA mis BY typ(1 2) vol(1 4)

 /CONTRAST(vol) = SPECIAL(1 1 1 1  -1 -1 1 1  -1 1 0 0  0 0 -1 1)

 /DESIGN typ vol(1) W typ(1) vol(2) W typ(1)  vol(3) W typ(1)

             vol(1) W typ(2) vol(2) W typ(2)  vol(3) W typ(2).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00      16      3.75
 TYP                       24.00       1     24.00      6.40      .022
 VOL(1) W TYP(1)            3.00       1      3.00       .80      .384
 VOL(2) W TYP(1)            1.50       1      1.50       .40      .536
 VOL(3) W TYP(1)            1.50       1      1.50       .40      .536

 VOL(1) W TYP(2)           75.00       1     75.00     20.00      .000

 VOL(2) W TYP(2)           13.50       1     13.50      3.60      .076
 VOL(3) W TYP(2)            1.50       1      1.50       .40      .536

GLM uses /LMATRIX for simple effects contrasts with the coefficients for one level of the other

factor set to 0, similar to earlier analysis for simple effects. The commands are illustrated below; as before,

coefficients for main effects are included as well as those for simple effects. The results below agree with

previous calculations. The first example produces a summary table for each contrast by including separate

/LMATRIX options. No overall simple effect is presented. The second example produces the overall simple

effect using /LMATRIX by including k - 1 orthogonal contrasts separated by semi-colons. Each contrast is

tested for significance before the overall summary table.

GLM mis BY typ vol /LMATRIX vol -3 -1  1  3 vol BY typ  0 0 0 0 -3 -1  1  3

 /LMATRIX vol  1 -1 -1  1 vol BY typ  0 0 0 0  1 -1 -1  1

 /LMATRIX vol -1  3 -3  1 vol BY typ  0 0 0 0 -1  3 -3  1.

...
custom hypothesis tests #1

 l1       contrast estimate           22.000 SS = 3×222/20 = 72.6

          std. error                  5.000 t = 22.0/5.0 = 4.4 = %F

          sig.                        .000            

 source   sum of squares df mean square f      sig. 
 contrast 72.600         1  72.600      19.360 .000 
 error    60.000         16 3.750                   

custom hypothesis tests #2
 l1       contrast estimate           -4.000          
          std. error                  2.236           
          sig.                        .093            

 source   sum of squares df mean square f     sig. 
 contrast 12.000         1  12.000      3.200 .093 
 error    60.000         16 3.750                  

Custom Hypothesis Tests #3
 L1       Contrast Estimate           -6.000          
          Std. Error                  5.000           
          Sig.                        .248            
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 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 5.400          1  5.400       1.440 .248 
 Error    60.000         16 3.750

GLM mis BY typ vol /LMATRIX vol -3 -1  1  3 vol BY typ  0 0 0 0  -3 -1  1  3;

    vol  1 -1 -1  1 vol BY typ  0 0 0 0   1 -1 -1  1;

    vol -1  3 -3  1 vol BY typ  0 0 0 0  -1  3 -3  1.

...
Custom Hypothesis Tests

 L1       Contrast Estimate           22.000          t = 22.0/5.0 = 4.4 

          Std. Error                  5.000           t2 = 4.42 = 19.36 = FL1

          Sig.                        .000

 L2       Contrast Estimate           -4.000
          Std. Error                  2.236
          Sig.                        .093

 L3       Contrast Estimate           -6.000
          Std. Error                  5.000
          Sig.                        .248

 Source   Sum of Squares df Mean Square F     Sig. 

 Contrast 90.000         3  30.000      8.000 .002 

 Error    60.000         16 3.750

A simple effects analysis, perhaps followed by post hoc or planned comparisons of the simple effects,

is one way to follow-up an interaction that was significant or predicted prior to the study. However, simple

effects analyses sum SSs for a main effect and an interaction, which is partitioned into simple effects. The

analysis does not involve pure interaction. An alternative approach is partitioning the interaction itself.

Partitioning the Interaction

It is possible to define contrast coefficients that partition SSInteraction into components associated with

particular patterns in the data. Although simple to analyze, the results can be a challenge to interpret. The

default factorial ANOVA for errors as a function of distraction by two types of sound (Noise or Speech) at

four volumes showed a marginally significant interaction with df = 3. The SS and df for the interaction can be

partitioned into three single df effects, as done previously for main effects. Here is the initial default analysis.

Partitioning the interaction divides SS = 36.00 into three single df effects.

 Source          Type III Sum of df Mean Square F       Sig. 
                 Squares                                     
 typ             24.000          1  24.000      6.400   .022 
 vol             60.000          3  20.000      5.333   .010 
 typ * vol       36.000          3  12.000      3.200   .052 

 Error           60.000          16 3.750                    

Partitioning the 36.00 units of variability in the T×V interaction takes two steps. First, contrast

coefficients are created for the two main effects using the eight cell means rather than row and column

means. The typ factor requires a single contrast to compare the two groups; this contrast is redundant with the

main effect of typ, dfType = 1. The vol factor with df = 3 requires three contrasts, as shown previously.
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Polynomial contrasts are appropriate given the ordered levels of the volume factor.

Second, each contrast coefficient for one factor is multiplied times each contrast coefficient for the

other factor to create (A-1)×(B-1) additional contrasts. These are interaction contrasts. The present study

creates (2-1)×(4-1) = 3 new contrasts, as shown below. To illustrate this second step, the T×Vlin contrasts

are: -1×-3 = +3, -1×-1 = +1, ..., +1×+1 = +1, and +1×+3 = +3. If Type had more than two levels then there

would be two or more contrast coefficients for Type. Each contrast for Type would be multiplied times each

contrast for Volume. See Appendix 6-1 for an example of two factors with dfNumerator>1.

  Noise Speech

1 2 3 4 1 2 3 4

y&&ab 4.0 3.0 5.0 4.0 2.0 5.0 9.0 8.0 L SS

Main Effects

  Type -1 -1 -1 -1 +1 +1 +1 +1 8.0 24.0 = 3× 82/8 = SSType Main Effect

  Vlin -3 -1 +1 +3 -3 -1 +1 +3

  Vqua +1 -1 -1 +1 +1 -1 -1 +1

  Vcub -1 +3 -3 +1 -1 +3 -3 +1

Interaction

  TxVlin +3 +1 -1 -3 -3 -1 +1 +3 20.0 30.0 = 3× 202/40

  TxVqua -1 +1 +1 -1 +1 -1 -1 +1 -4.0  6.0 = 3×-42/8

  TxVcub +1 -3 +3 -1 -1 +3 -3 +1  0.0  0.0 = 3× 02/40

       ' =  36.0 = SSTxV

Given the multiplication by -1 and +1, the interaction contrasts have opposite signs for the two levels

of typ. The T×Vlin coefficients are +3, +1, -1, and -3 for the Noise condition and -3, -1, +1, and +3 for the

Speech condition, a linear decrease for Noise and linear increase for Speech. These coefficients test for

opposite linear patterns for the vol effect at each level typ; that is, a cross-over effect. The T×Vqua coefficients

are an inverted u-shape for Noise and a u-shape for Speech, again opposite patterns for the two stimulus

types. The specific positive or negative values are irrelevant as long as they reverse for the two levels of typ,

because it is the strength of the correlation between these coefficients and the data that matters, not the sign.

Also, the contrast L is squared to produce SSL so the sign is irrelevant to the calculation, although not for the

interpretation.

Once the interaction contrasts have been created, the analysis proceeds as for any contrast: L = 'cjy&&j

and SS = njL
2/ 'cj

2. These calculations are shown above. Most of the interaction variability falls on the T×Vlin

contrast, which produces F = 30.0/3.75 = 8.0. This contrast is significant, whereas the others are not. Indeed

SS = 0 for the T×Vcub component of the interaction. The SSs for the three contrasts sum to SST×V, which has

been partitioned into df = 1 effects with most variability loading on a single contrast, the linear.

This partitioning was produced in an earlier MANOVA analysis of main effects because the
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SINGLEDF option partitions both main effects and interactions with df>1. The analysis is reproduced below.

The 1st, 2nd, and 3rd parameters for typ BY vol agree with our calculations. The T×Vlin effect is highly

significant, p = .012, indicating that the linear relationship between volume and mistakes is significantly

different for Noise and Speech. As shown previously for main effects, the mean of the three Fs equals the

omnibus F; that is, (8.0+1.6+0.0)/3 = 3.2 = FTxV, showing again that a specific contrast can be more

significant than an omnibus effect. The t-tests and associated coefficients are not shown, but would be based

on normalized coefficients.

MANOVA mis BY typ(1 2) vol(1 4) /CONTRAST(vol) = POLY /PRINT = SIGNI(SINGLEDF).

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              60.00      16      3.75
 typ                       24.00       1     24.00      6.40      .022
 vol                       60.00       3     20.00      5.33      .010
   1ST Parameter           43.20       1     43.20     11.52      .004
   2ND Parameter            6.00       1      6.00      1.60      .224
   3RD Parameter           10.80       1     10.80      2.88      .109

 typ BY vol                36.00       3     12.00      3.20      .052

   1ST Parameter           30.00       1     30.00      8.00      .012

   2ND Parameter            6.00       1      6.00      1.60      .224

   3RD Parameter             .00       1       .00       .00     1.000

 (Model)                  120.00       7     17.14      4.57      .006
 (Total)                  180.00      23      7.83
...

The corresponding analysis with GLM uses the /LMATRIX option and the contrast coefficients

created above. Hence, GLM entails prior work to generate coefficients for the analysis. Unlike /LMATRIX

for main and simple effects, vol BY typ appears without the vol main effect coefficients preceding it.

GLM mis BY typ vol /LMATRIX vol BY typ  +3  1 -1 -3  -3 -1  1  3

                   /LMATRIX vol BY typ  -1 +1 +1 -1  +1 -1 -1 +1

                   /LMATRIX vol BY typ  +1 -3 +3 -1  -1 +3 -3 +1.

...
Custom Hypothesis Tests #1

 L1       Contrast Estimate           20.000

          Std. Error                  7.071

          Sig.                        .012

 Source   Sum of Squares df Mean Square F     Sig. 

 Contrast 30.000         1  30.000      8.000 .012 

 Error    60.000         16 3.750                  

Custom Hypothesis Tests #2
 L1       Contrast Estimate           -4.000          
          Std. Error                  3.162           
          Sig.                        .224          
 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 6.000          1  6.000       1.600 .224 
 Error    60.000         16 3.750

Custom Hypothesis Tests #3
 L1       Contrast Estimate           .000            
          Std. Error                  7.071           
          Sig.                        1.000           
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Figure 6-1. Interaction deviations

and contrast coefficients

Figure 6-2. Plot of cell means

 Source   Sum of Squares df Mean Square F    Sig.  
 Contrast .000           1  .000        .000 1.000 
 Error    60.000         16 3.750

But what does it mean that T×Vlin is significant and accounts for

most of the interaction variability? In its simplest terms, it means that

contrast coefficients with reverse linear patterns correlate well with the

actual data. We show this explicitly shortly, but can get some sense of the

fit by returning to an earlier plot of the cell means with main effects

removed; these means represent pure interaction. Figure 6-1 shows the plot

along with labels for the contrast coefficients corresponding to each cell

mean. The distinct pattern of decreasing mistakes with volume for the

Noise condition, and increasing mistakes for the Speech condition is

mirrored in the corresponding contrast coefficients. That is, there is a

strong positive correlation between the linear contrast coefficients and cell means with main effects removed.

If the signs of the contrast coefficients were reversed, the strong negative correlation would capture the same

amount of variability in the interaction.

The interaction cell means also illustrate why the T×Vqua effect captured some of the variability in the

means. The quadratic coefficients, -1 +1 +1 -1 and +1 -1 -1 +1, capture opposite U-shaped patterns. The two

lines above have opposite curves after linear effects are removed. Noise shows a U-shaped pattern, whereas

Speech shows an inverted U-shaped pattern. This accounts for 6.0 units of variability in the interaction and is

not significant. Once the linear and quadratic components are removed, the Cubic coefficients, -1 +3 -3 +1 &

1 -3 3 -1 look for a zig-zag pattern in the data (i.e., up-down-up or down-up-down). In the present data, no

zig-zag pattern remains in the means after main effects and linear and quadratic components of the interaction

are removed.

It is important to remember that main effects are removed in Figure

6-1. In fact the actual change in mistakes with increasing volume for the

Noise condition is minimal; the cell means are quite flat, as shown in

Figure 6-2. Fitting separate straight lines to the Noise and Speech data, as

done for regression, the slope for Noise would be small whereas the slope

for Speech would be relatively large. This difference in slopes is captured

by the T×Vlin coefficients.

It is possible to “see” interaction effects in the original means. The
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difference in linear effects is clear in Figure 6-2. The means for noise are all similar across levels of Volume

while those for Speech increase. As well the Speech condition shows an inverted U-shaped pattern about the

linear effect, whereas the Noise condition shows little or no U-shaped pattern. That the cubic zig-zag patterns

are identical is more difficult to see.

Thinking about interactions in terms of regression

provides another way to conceptualize the linear component

of the volume by type interaction. Figure 6-3 shows a

scattergram of mistakes plotted as a function of volume

separately for the Noise condition (stars and dashed line) and

the Speech condition (boxes and solid line). The slopes for

the two best-fit lines (i.e., linear relationships) are markedly

different, with volume accounting for much variability in the

Speech condition (r2 = .605) and very little in the Noise

condition (r2 = .017). In regression, this represents the

difference between slopes for best-fit lines, which is captured

in ANOVA with the interaction partitioned into linear,

quadratic, and cubic effects. We explore this further when

examining a regression approach to these analyses.

Before moving on to the regression analyses for factorial designs, however, one aspect of the GLM

/LMATRIX option should be emphasized. As mentioned previously, the order of contrast coefficients must

correspond to the order of the cell means in the GLM main command, and the order of cell means depends on

the order that factors are listed after BY. The levels and means of the second factor after BY occur within the

levels of the first factor and change more quickly. For BY typ vol cell means for vol are nested within levels

of typ. Given BY vol typ, levels for typ are nested within levels of vol and contrast coefficients must be

reordered to obtain correct results. One way to check that data and contrast coefficients align properly is to

compare the order of cell means from the DESCRIPTIVE option and the order of contrast coefficients, as

shown to the right of the cell means below, first for the typ vol order, and then for the vol typ order.

Figure 6-3. Separate regression lines for Noise

and Speech
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GLM mis BY typ vol /PRINT = DESCR /LMATRIX vol BY typ  +3 +1 -1 -3  -3 -1  1  3.

 typ    vol    Mean     Std. Deviation N  Cjs

 1.0000 1.0000 4.000000 3.0000000      3  +3

        2.0000 3.000000 1.0000000      3  +1

        3.0000 5.000000 2.0000000      3  -1

        4.0000 4.000000 1.0000000      3  -3

        Total  4.000000 1.8090681      12 

 2.0000 1.0000 2.000000 1.0000000      3  -3

        2.0000 5.000000 3.0000000      3  -1

        3.0000 9.000000 1.0000000      3  +1

        4.0000 8.000000 2.0000000      3  +3

        Total  6.000000 3.3028913      12 
 Total  1.0000 3.000000 2.2803509      6  
        2.0000 4.000000 2.2803509      6  
        3.0000 7.000000 2.6076810      6  
        4.0000 6.000000 2.6076810      6  
        Total  5.000000 2.7975144      24 
...
Custom Hypothesis Tests
 Source   Sum of Squares df Mean Square F     Sig. 

 Contrast 30.000         1  30.000      8.000 .012 

 Error    60.000         16 3.750                  

GLM mis BY vol typ /PRINT = DESCR /LMATRIX vol BY typ  +3 -3 +1 -1  -1 +1 -3 +3.

 vol    typ    Mean     Std. Deviation N  Cjs

 1.0000 1.0000 4.000000 3.0000000      3  +3

        2.0000 2.000000 1.0000000      3  -3

        Total  3.000000 2.2803509      6  

 2.0000 1.0000 3.000000 1.0000000      3  +1

        2.0000 5.000000 3.0000000      3  -1

        Total  4.000000 2.2803509      6  

 3.0000 1.0000 5.000000 2.0000000      3  -1

        2.0000 9.000000 1.0000000      3  +1

        Total  7.000000 2.6076810      6  

 4.0000 1.0000 4.000000 1.0000000      3  -3

        2.0000 8.000000 2.0000000      3  +3

        Total  6.000000 2.6076810      6  
 Total  1.0000 4.000000 1.8090681      12 
        2.0000 6.000000 3.3028913      12 
        Total  5.000000 2.7975144      24 
...
Custom Hypothesis Tests
 Source   Sum of Squares df Mean Square F     Sig. 

 Contrast 30.000         1  30.000      8.000 .012 

 Error    60.000         16 3.750                  

The first analysis above corresponds to how the cell means and contrast coefficients were arranged

earlier. The second analysis corresponds to a different ordering of means and coefficients. In both cases, the

coefficients on /LMATRIX correspond to the proper cell means in the descriptives.

© James M. Clark 2024



Analysis of Variance 6.10

Calculations with cells in different order
Vol 1 2 3 4
Typ N S N S N S N S
y&&ab 4.0 2.0 3.0 5.0 5.0 9.0 4.0 8.0

Main Effects
  TYP -1 +1 -1 +1 -1 +1 -1 +1
  Vlin -3 -3 -1 -1 +1 +1 +3 +3
Interaction       L
  TxVlin +3 -3 +1 -1 -1 +1 -3 +3    20.0

Note the nonsense below when cell means and coefficients do not align properly with one another.

Coefficients in WRONG order

Vol 1 2 3 4

Typ N S N S N S N S

y&&ab 4.0 2.0 3.0 5.0 5.0 9.0 4.0 8.0

Vlin -3 -1 +1 +3 -3 -1 +1 +3

Regression Analyses for the Between-S Factorial

The single-factor study required k - 1 predictors to carry out analysis of variance by regression,

where k equalled the number of levels of our factor. The present factorial study involves 8 cells, and requires

8 - 1 = 7 predictors. Partitioning the interaction involved 7 contrasts, one for typ, three for the main effect of

vol, and three for the typ by vol interaction. To obtain the preceding analyses with REGRESSION, the 7

contrasts are used to create the 7 predictor variables with the following commands. The actual predictors are

shown following the regression analysis.

RECODE typ (1 = -1) (2 = +1) INTO type.

RECODE vol (1 = -3) (2 = -1) (3 =  1) (4= 3) INTO vlin.

RECODE vol (1 =  1) (2 = -1) (3 = -1) (4= 1) INTO vqua.

RECODE vol (1 = -1) (2 =  3) (3 = -3) (4= 1) INTO vcub.

COMPUTE txvlin = type*vlin.

COMPUTE txvqua = type*vqua.

COMPUTE txvcub = type*vcub.

Regressing mistakes on these predictors shows the significance of each single df contrast (i.e.,

predictor), but does not provide information about the overall main effect of vol (df = 3) or the overall

interaction (df = 3). These additional statistics can be obtained by entering the three predictors for the main

effect OR the three predictors for the interaction after the other four predictors, and requesting CHANGE

statistics for the strength and significance of the change in SSRegression when the final three predictors are

added. FChange will represent the effect of the three additional predictors (i.e., df = 3), either main effect of vol

or interaction. The CHANGE statistic in the following analysis tests the overall interaction effect.

REGRESS /DESCR /STAT = DEFAU CHANGE /DEP = mis

  /ENTER type vlin vqua vcub /ENTER txvlin txvqua txvcub

  /SAVE PRED(prdmab) RESI(resmab).
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        Mean  Std. Deviation N  

 mis    5.000 2.7975         24 SSTotal = (24-1)×2.7975
2 = 180.0

 type   .00   1.022          24 
 vlin   .00   2.284          24 
 vqua   .00   1.022          24

 vcub   .00   2.284          24 Ms = 0 for all predictors, contrasts

 txvlin .00   2.284          24 
 txvqua .00   1.022          24 
 txvcub .00   2.284          24 

Correlations r2 × SSTotal

         mis   type  vlin  vqua  vcub  txvlin txvqua 

  type   .365  24.0 = SSType

  vlin   .490  .000  43.2

  vqua   -.183 .000  .000  6.0  3 = 60.0
  vcub   -.245 .000  .000  .000  10.8    = SSVol

  txvlin .408  .000  .000  .000  .000 30.0

  txvqua -.183 .000  .000  .000  .000  .000    6.0  3 = 36.0
  txvcub .000  .000  .000  .000  .000  .000   .000    0.0    = SSTxV

The descriptive statistics are informative. First, the means for all seven predictors are 0, indicating

they are contrasts (i.e., 3cj = 0). Second, the seven predictors are uncorrelated; that is, they are orthogonal

(3cjc’j = 0). Finally, the correlation between each predictor and the dependent variable mis can be squared

and multiplied by SSTotal to produce SSs that correspond to earlier calculations for each contrast. Summing

the three contrasts for main effects of vol produces SSVol and summing the three contrasts for the interaction

produces SSTxV. In essence, contrast analysis tests the significance of the correlation between the data and a

pattern represented by contrast coefficients. The simple correlations correspond to earlier calculations

because predictors are orthogonal.

With respect to the summary table for Model 2 below, SSTotal is partitioned into what we can predict

overall and residual: SSResidual = 60.0 = SSError from the analysis of variance, with df = N-p-1 = 24-7-1 = 16, as

for SSError. Therefore, the error terms are the same for regression and analysis of variance, that is, MSResidual =

MSError. The overall F itself is of little interest as it aggregates all the effects; that is, SSRegression = 120.0 = SSTyp

+ SSVol + SSTxV = SSModel.  This same value is SSModel in ANOVAs.

 Model R     R       Change Statistics
             Square  R Square Change F Change df1 df2 Sig.
 1   .683(a) .467    .467            4.156    4   19  .014

 2   .816(b) .667    .200            3.200    3   16  .052

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 84.000         4  21.000      4.156 .014(a) 
       Residual   96.000         19 5.053                     
       Total      180.000        23
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 2     Regression 120.000        7  17.143      4.571 .006(b)
       Residual   60.000         16 3.750                     

       Total      180.000        23     SSChange = 120.0 - 84.0 = 36.0 = SSTxV

MSResidual = MSError because the Model 2 regression equation produces cell means as predicted values;

hence, residuals are deviations of observed values from the cell means, exactly how SSError was calculated.

Predicted and residual values appear in the prdmab and resmab columns below.

The ts, ps, and Fs (computed to the right) for the individual predictors correspond to earlier contrast

analyses. The main effect of typ is significant, as are the linear components of the main effect of vol and of

the typ by vol interaction. Other effects are not significant.

 Model            Unstandardized             Standardized    t      Sig.  
                  Coefficients               Coefficients                 
                  B               Std. Error Beta                         
...

 2     (Constant) 5.000           .395                       12.649 .000      t2=F

       type       1.000           .395       .365            2.530  .022      6.40

       vlin       .600            .177       .490            3.394  .004     11.52

       vqua       -.500           .395       -.183           -1.265 .224      1.60

       vcub       -.300           .177       -.245           -1.697 .109      2.88

       txvlin     .500            .177       .408            2.828  .012      8.00

       txvqua     -.500           .395       -.183           -1.265 .224      1.60

       txvcub     .000            .177       .000            .000   1.000     0.00

Here are the coefficients created earlier and the predicted and residual values from the regression.

FORMAT typ vol type TO txvcub (F2.0) mis prdmab resmab (F4.1).

LIST.

typ vol  mis type vlin vqua vcub  t×vlin t×vqua t×vcub prdmab resmab
  1   1  1.0  -1   -3    1   -1     3     -1      1     4.0   -3.0
  1   1  4.0  -1   -3    1   -1     3     -1      1     4.0     .0
  1   1  7.0  -1   -3    1   -1     3     -1      1     4.0    3.0
  1   2  4.0  -1   -1   -1    3     1      1     -3     3.0    1.0
  1   2  2.0  -1   -1   -1    3     1      1     -3     3.0   -1.0
  1   2  3.0  -1   -1   -1    3     1      1     -3     3.0     .0
  1   3  5.0  -1    1   -1   -3    -1      1      3     5.0     .0
  1   3  7.0  -1    1   -1   -3    -1      1      3     5.0    2.0
  1   3  3.0  -1    1   -1   -3    -1      1      3     5.0   -2.0
  1   4  3.0  -1    3    1    1    -3     -1     -1     4.0   -1.0
  1   4  5.0  -1    3    1    1    -3     -1     -1     4.0    1.0
  1   4  4.0  -1    3    1    1    -3     -1     -1     4.0     .0
  2   1  3.0   1   -3    1   -1    -3      1     -1     2.0    1.0
  2   1  2.0   1   -3    1   -1    -3      1     -1     2.0     .0
  2   1  1.0   1   -3    1   -1    -3      1     -1     2.0   -1.0
  2   2  5.0   1   -1   -1    3    -1     -1      3     5.0     .0
  2   2  2.0   1   -1   -1    3    -1     -1      3     5.0   -3.0
  2   2  8.0   1   -1   -1    3    -1     -1      3     5.0    3.0
  2   3 10.0   1    1   -1   -3     1     -1     -3     9.0    1.0
  2   3  9.0   1    1   -1   -3     1     -1     -3     9.0     .0
  2   3  8.0   1    1   -1   -3     1     -1     -3     9.0   -1.0
  2   4  6.0   1    3    1    1     3      1      1     8.0   -2.0
  2   4 10.0   1    3    1    1     3      1      1     8.0    2.0
  2   4  8.0   1    3    1    1     3      1      1     8.0     .0

The default regression provides statistics for each single df effect, corresponding to the main effect of
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Figure 6-5. Predicted cell means from

main effects.

typ and the partitioning of the vol main effect and the typ BY vol interaction into linear, quadratic, and cubic

components. To obtain information about effects with df > 1, either aggregate the df = 1 statistics or enter

multiple predictors last and request change statistics, as shown here for the interaction.

SSChange between Model 1 (only main effect predictors) and Model 2 (main + interaction predictors)

produces SSTxV. The test of significance for this change produced F = 3.2 and p = .052. These values

correspond with those obtained earlier for the overall interaction effect.

We previously calculated the predicted cell means with no interaction by saving predicted scores from

a GLM with only main effects; that is,

GLM mis BY typ vol /DESIGN typ vol

 /SAVE PRED(mnmain).

The same result can be produced by regressing mistakes on

only the main effect predictors; that is,

REGRESS /DEP = mis /ENTER type TO vcub

  /SAVE PRED(prdmain).

The new variable, prdmain, contains cell means with the

interaction removed, as shown in Figure 6-5. Deviations of prdmab,

calculated above, from prdmain are the interaction deviations; that is,

how far from no interaction are observed cell means. Squared and

summed over all observations these deviations produce SSTxV, as

shown previously with GLM.

Regression and the Simple Effects ANOVA

Earlier analyses of the simple effects of vol within levels of

the typ factor again used 7 contrasts: one contrast for typ, three

contrasts for vol W typ(1), and three for vol W typ(2). These seven contrasts are created below followed by a

regression analysis that provides results for individual contrasts and for the overall simple effect of volume

for the Speech condition in the CHANGE statistics.

The following commands generate the predictors or indicator variables. The typ factor is coded as

before, but now linear, quadratic, and cubic predictors are created separately for the Noise and Speech

conditions. The IFs below set the values of the predictors to 0 for the other typ condition; for example, the

command IF typ = 2 vlinWt1 = 0 sets vlinWt1 to 0 for the Speech condition. These new predictors are shown

after the regression analysis.

RECODE typ (1 = -1) (2 = +1) INTO type.

RECODE vol (1 = -3) (2 = -1) (3 =  1) (4= 3) INTO vlinWt1.

IF typ = 2 vlinWt1 = 0.
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RECODE vol (1 =  1) (2 = -1) (3 = -1) (4= 1) INTO vquaWt1.

IF typ = 2 vquaWt1 = 0.

RECODE vol (1 = -1) (2 =  3) (3 = -3) (4= 1) INTO vcubWt1.

IF typ = 2 vcubWt1 = 0.

RECODE vol (1 = -3) (2 = -1) (3 =  1) (4= 3) INTO vlinWt2.

IF typ = 1 vlinWt2 = 0.

RECODE vol (1 =  1) (2 = -1) (3 = -1) (4= 1) INTO vquaWt2.

IF typ = 1 vquaWt2 = 0.

RECODE vol (1 = -1) (2 =  3) (3 = -3) (4= 1) INTO vcubWt2.

IF typ = 1 vcubWt2 = 0.

The initial statistics show that the predictors are contrasts and orthogonal. Moreover, rs between

predictors and mis reflect relationships between contrast coefficients and means. SSs are shown to the right

for vol W typ(2), separately for each contrast and then summed to obtain the overall simple effect for the

Speech condition.

REGRESS /DESCR /STAT = DEFAU CHANGE /DEP = mis

  /ENTER type vlinWt1 vquaWt1 vcubWt1

  /ENTER vlinWt2 vquaWt2 vcubWt2

  /SAVE PRED(prdmab) RESI(resmab).

         Mean    Std. Deviation N  
 mis     5.000   2.7975         24 
 type    .000000 1.0215078      24 
 vlinWt1 .000000 1.6151457      24 
 vquaWt1 .000000 .7223151       24 
 vcubWt1 .000000 1.6151457      24 
 vlinWt2 .000000 1.6151457      24 
 vquaWt2 .000000 .7223151       24 
 vcubWt2 .000000 1.6151457      24 

          mis   type  vlinWt1 vquaWt1 vcubWt1 vlinWt2 vquaWt2 r2 x SSTotal

   type    .365  
   vlinWt1 .058  .000  
   vquaWt1 .000  .000  .000    
   vcubWt1 -.173 .000  .000    .000    

   vlinWt2 .635  .000  .000    .000    .000    72.6

   vquaWt2 -.258 .000  .000    .000    .000    .000    12.0  3=90 = SSVwT2

   vcubWt2 -.173 .000  .000    .000    .000    .000    .000  5.4

The summary table for Model 2 corresponds to that for the default factorial regression because

predicted values equal the eight cell means. CHANGE statistics correspond to the overall simple effect of vol

for the Speech condition, and individual predictors are planned contrasts for the simple effects.

 Model R      R       Change Statistics
              Square  R Square Change F Change df1 df2 Sig.
 1    .408(a) .167    .167            .950     4   19  .457

 2    .816(b) .667    .500            8.000    3   16  .002

 Model            Sum of Squares df Mean Square F     Sig.    
 1     Regression 30.000         4  7.500       .950  .457(a) 
       Residual   150.000        19 7.895                     
       Total      180.000        23                           

 2     Regression 120.000        7  17.143      4.571 .006(b) 
       Residual   60.000         16 3.750                     

       Total      180.000        23    SSChange = 90.0 = SSVwT2
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 Model            Unstandardized             Standardized    t      Sig.  

                  Coefficients               Coefficients                 

                  B               Std. Error Beta                         

...

 2     (Constant) 5.000           .395                       12.649 .000  

       type       1.000           .395       .365            2.530  .022  

       vlinWt1    .100            .250       .058            .400   .694  

       vquaWt1    .000            .559       .000            .000   1.000 

       vcubWt1    -.300           .250       -.173           -1.200 .248  

       vlinWt2    1.100           .250       .635            4.400  .000 F = 4.42 = 19.36

       vquaWt2    -1.000          .559       -.258           -1.789 .093

       vcubWt2    -.300           .250       -.173           -1.200 .248  

The listing below shows predictors based on simple effect contrasts. They correspond to coefficients

used previously to calculate SS by hand. The listing also shows that the predicted values equal the cell means

and the residual values are deviations of the observed scores from the cell means, just how SSError was

calculated using the ANOVA formula.

FORMAT typ vol type TO vcubWt2 (F2.0) mis prdmab resmab (F4.1).

LIST.

typ vol  mis type vlinWt1 vquaWt1 vcubWt1 vlinWt2 vquaWt2 vcubWt2 prdmab resmab
  1   1  1.0  -1     -3       1      -1       0       0       0     4.0   -3.0
  1   1  4.0  -1     -3       1      -1       0       0       0     4.0     .0
  1   1  7.0  -1     -3       1      -1       0       0       0     4.0    3.0
  1   2  4.0  -1     -1      -1       3       0       0       0     3.0    1.0
  1   2  2.0  -1     -1      -1       3       0       0       0     3.0   -1.0
  1   2  3.0  -1     -1      -1       3       0       0       0     3.0     .0
  1   3  5.0  -1      1      -1      -3       0       0       0     5.0     .0
  1   3  7.0  -1      1      -1      -3       0       0       0     5.0    2.0
  1   3  3.0  -1      1      -1      -3       0       0       0     5.0   -2.0
  1   4  3.0  -1      3       1       1       0       0       0     4.0   -1.0
  1   4  5.0  -1      3       1       1       0       0       0     4.0    1.0
  1   4  4.0  -1      3       1       1       0       0       0     4.0     .0
  2   1  3.0   1      0       0       0      -3       1      -1     2.0    1.0
  2   1  2.0   1      0       0       0      -3       1      -1     2.0     .0
  2   1  1.0   1      0       0       0      -3       1      -1     2.0   -1.0
  2   2  5.0   1      0       0       0      -1      -1       3     5.0     .0
  2   2  2.0   1      0       0       0      -1      -1       3     5.0   -3.0
  2   2  8.0   1      0       0       0      -1      -1       3     5.0    3.0
  2   3 10.0   1      0       0       0       1      -1      -3     9.0    1.0
  2   3  9.0   1      0       0       0       1      -1      -3     9.0     .0
  2   3  8.0   1      0       0       0       1      -1      -3     9.0   -1.0
  2   4  6.0   1      0       0       0       3       1       1     8.0   -2.0
  2   4 10.0   1      0       0       0       3       1       1     8.0    2.0
  2   4  8.0   1      0       0       0       3       1       1     8.0     .0

Comparison of Contrasts for Main, Simple, and Interaction Effects

It is informative to compare contrasts for main, simple, and interaction effects. The linear contrasts

are shown below.
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Noise Speech
Vol = 1 2 3 4 1 2 3 4
y&&ab 4.0 3.0 5.0 4.0 2.0 5.0 9.0 8.0

Main Effect
  Vlin -3 -1 +1 +3 -3 -1 +1 +3

Simple Effects
 VlinWt(1) -3 -1 +1 +3  0  0  0  0
 VlinWt(2)  0  0  0  0 -3 -1 +1 +3

Interaction
  TxVlin +3 +1 -1 -3 -3 -1 +1 +3

The main effect contrast tests for the same linear pattern in vol across both levels of typ. It tests

whether the linear increase or decrease with volume is significant averaged across levels of type. The

interaction contrast tests for the opposite linear pattern in vol at each level of typ (with main effects removed).

It determines whether the slope for an increase or decrease in mistakes with volume at one level of the typ

factor is significantly different from the slope for the other level of the typ factor. Finally, simple effects

contrasts test the significance of separate linear patterns at each level of the typ factor. It determines whether

the linear effect of volume is significant for the Noise type alone and whether the linear effect of volume is

significant for the Speech type alone.

Although simple effects and partitioning were presented as two approaches to follow-up analyses for

an interaction, the two methods can be used in conjunction with the omnibus F for the interaction. One

possible scenario is first test the significance of the omnibus F, then the significance of the expected

partitioning of the interaction, and finally the simple effects. This sequence provides increasingly specific

information. In the present study, for example, the marginal omnibus F for the interaction and the graph

suggest some difference in the effect of volume for Noise and Speech. Partitioning the interaction localizes

the difference in the linear effects of the interaction. The simple effects analyses show that the linear effect of

volume is not significant for Noise but is for Speech.

This completes discussion of the Between-S factorial design. We next consider designs involving one

or more Within-Subject factors. For Within-S designs, numerators for the various effects are calculated and

understood as for Between-S designs. However, different denominators are required to correctly test the null

hypotheses. Understanding those denominators benefits from understanding interactions and simple-effects. 
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APPENDIX 6-1: INTERACTION CONTRASTS FOR FACTORIAL DESIGNS

The Type by Volume study was a 2×4 design, so partitioning the interaction involved one contrast for

Type multiplied times three contrasts for Volume, resulting in three contrasts to partition the interaction.

When both factors have more than two levels (i.e., are represented by more than a single contrast), then each

contrast for one factor must be multiplied by each contrast for the other factor. Specifically, the (A-1)

contrasts for factor A are multiplied times the (B-1) contrasts for factor B, which produces (A-1)(B-1)

contrasts to partition the interaction. Recall that the df for the interaction is (A-1)(B-1) and each df requires a

contrast. The example below shows the operations for a 3×3 design, which produces (3-1)(3-1) = 4

interaction contrasts. A 3×4 design would produce (3-1)(4-1) = 6 interaction contrasts, and so on.

A1 A2 A3

B1 B2 B3 B1 B2 B3 B1 B2 B3

Alinear -1 -1 -1  0  0  0  1  1  1

Aquadratic -1 -1 -1  2  2  2 -1 -1 -1

Blinear -1  0  1 -1  0  1 -1  0  1

Bquadratic -1  2 -1 -1  2 -1 -1  2 -1

Alin×Blin  1  0 -1  0  0  0 -1  0  1

Alin×Bqua  1 -2  1  0  0  0 -1  2 -1

Aqua×Blin  1  0 -1 -2  0  2  1  0 -1

Aqua×Bqua  1 -2  1 -2  4 -2  1 -2  1
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CHAPTER 7 - SINGLE-FACTOR WITHIN-S ANOVA

Previous analyses involved Between-S factors in which scores at one level of a factor are uncorrelated

with scores at other levels of the factor. If scores are independent, it is reasonable to assume that all

variability within levels of a factor is due to random variation or noise; hence the SSs and dfs within groups

can be summed to create SSError and dfError. This assumption is wrong when scores are correlated across

conditions, which occurs when the same subjects are involved or scores correlate for other reasons (e.g.,

related subjects as in twins or animals from the same litter, subjects in different conditions matched on a

relevant variable). Irrespective of how the expected correlation occurs, such factors are treated as Within-

Subjects or Within-S factors. Between-S and Within-S analyses differ only with respect to error, the

denominator for F. Conceptualization and previous calculations for numerators remain the same.

The following Within-S study involves four subjects who rated their agreement with controversial

statements repeated for three trials. Ratings were obtained after each trial and scores appear below (higher

scores = more agreement). Scores are expected to correlate across levels of the Trial factor if people with a

certain level of belief on one trial are likely to have a similar level of belief on other trials as well. For

example, subject 1 below had the lowest levels of belief for all three trials. Calculations are shown for SSTotal

and SSTrial. The calculation of these values is the same as for a Between-S factor.

    Trial (A)

    Subject   1     2    3

1.   2   6 10

2.   6   5 13

3.   9   8 13

4.  11  13 12

y&&a 7.0 8.0 12.0 y&&G =      9.0

y&&a - y&&G -2.0 -1.0 +3.0 SSTotal = 146.0
SSa 46.0 38.0 6.0

For comparison purposes, the Between-S analysis is shown below. This is not a proper analysis for a

Within-S design.

SSTotal = 146.0 = SSA + SSError = 33(y-y&&G)2

SSA =   56.0 = (-22 + -12 +32) dfA = 3-1 = 2 MSA = 28.0

SSError =   90.0 = 3SSa = 46.0 + 38.0 + 6.0 = SSTotal - SSA dfError = 12-3 = 9 MSError = 10.0

FBetween-S = MSA/MSError = 28.0 / 10.0 = 2.8 df = 2, 9 Between-S Analysis

The Between-S analysis is inappropriate because it assumes variability within-groups is entirely due

to random error that can be aggregated (pooled) to create the error term for the F. In the Within-S design,

however, some variability within groups is associated with systematic individual differences, and this shared

variation should be removed from the denominator along with its degrees of freedom. Shared variability is
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removed in a paired-difference t-test, for example, by subtracting the two scores to obtain a single difference

score. Within-S studies with more than two levels require an alternative approach, but it is equivalent to a

paired-difference t-test when there are only two levels to the factor.

The Within-S approach treats Subjects as a second factor in the study, with each subject a level of the

factor. Although we have not previously made the connection between error in the Between-S design and

simple effects, SSError for the Between-S design is the sum of the simple effects of the Subjects factor within

levels of A, that is, SSError = SSSwA = SSSw1 + SSSw2 + SSSw3 = 46.0 + 38.0 + 6.0 = 90.0. The Subject factor is

nested within levels of factor A because scores in each group are not related. Recall from the factorial

analysis that a simple effect is a combination of a main effect and an interaction. In this Between-S design,

SSSwTrial combines the main effect of Subjects and the Trial by Subjects interaction. In the Within-S design,

the Subject factor is said to be crossed with or orthogonal to levels of factor A as in a factorial ANOVA.

Because scores in each group are related, the single-factor Within-S design is essentially a factorial design

with A as one factor and Subjects (S) as a second factor. Each observation is analogous to a cell mean defined

by levels of the two factors, with one observation for each cell.

Conceptualizing the Within-S design as a factorial study suggests that variability due to Subjects can

be removed by calculating subject means averaged across treatments, and then computing SSSubjects (SSS) just

as SSB was calculated in the factorial design. Calculations are shown below.

SSTotal = SSA + SSSubjects + SSError SSError = SSTotal - SSA - SSS = SSAxS

       Trial (A)

    Subject 1 2 3   y&&s y&&s - y&&G ns

1.   2   6 10   6.0  -3.0 3

2.   6   5 13   8.0  -1.0 3

3.   9   8 13 10.0 +1.0 3

4. 11 13 12 12.0 +3.0 3

y&&a 7.0 8.0 12.0         y&&G = 9.0      N = 12

na 4 4 4

y&&a - y&&G -2.0 -1.0 +3.0 SSTotal = 146.0

SSS =   60.0 = 3(-32 + -12 + 12 + 32) = 60.0 dfS = 4 - 1 = 3

SSA =   56.0 = 4(-22 + -12 +32) = 56.0 dfA = 3 - 1 = 2 MSA = 56.0/2 = 28.0

SSError =   30.0 = 146.0 -56.0 -60.0 = 30.0 dfError = 11 - 2 - 3 = 6 MSError = 30.0/6 = 5.0

FWithin-S = 28.0 / 5.0 = 5.6  df = 2, 6       vs.     FBetween-S = 28.0 / 10.0 = 2.8 df = 2, 9

Individual observations at each combination of factor A and factor S include an A×S interaction effect

with nas = 1 (i.e., 1 observation per cell). Once variability due to the main effects of A and S are removed, any

remaining variability is due to the A×S interaction. The following calculations use our earlier formula for
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SSAxB. If scores are correlated, as in this example, then SSAxS will be smaller than SSSwA because SSS is

subtracted from SSTotal, leading to a larger value for F, albeit with fewer degrees of freedom. In general, this

leads to greater likelihood of rejecting H0: μ1 = μ2 = ... μk with a Within-S design. Within-S designs are more

sensitive to differences among means.

Expected Values if no A×S interaction Observed - Expected

  4   5   9 - 2 +1 +1

  6   7 11   0 - 2 +2 1×G2 = 30.0 = SSError

  8   9 13 +1 - 1   0

10 11 15 +1 +2 - 3

e.g., 9.0 + -3.0 + -2.0 = 4 in top-left cell

SPSS Analyses for the Within-S ANOVA

To show that a Within-S analysis corresponds to a factorial design with A and S as factors, we first

analyze the data in Between-S format, that is, with variables that represent the levels of A and S. Although

the proper analysis can be done with the data organized as for a Between-S factorial like this, SPSS provides

better ways to analyze Within-S factors as shown later. Most importantly, the Within-S approach in SPSS

determines the appropriate error terms for the omnibus ANOVA and follow-up analyses, whereas errors often

must be specified by users when data is in Between-S format. Remember that Within-S designs require

different error terms than Between-S designs. Numerators remain the same.

*Data entered in Between-S format; one observation per cell.

DATA LIST FREE / subj trial agree.

BEGIN DATA

1 1 2   1 2 6   1 3 10 2 1 6   2 2 5   2 3 13

3 1 9   3 2 8   3 3 13 4 1 11  4 2 13  4 3 12

END DATA.

*Between-S ANOVA (Incorrect Error for Within-S study).

MANOVA agree BY trial(1 3) /PRINT = CELL /DESIGN trial.

      FACTOR           CODE                  Mean  Std. Dev.          N
  TRIAL                  1                  7.000      3.916          4
  TRIAL                  2                  8.000      3.559          4
  TRIAL                  3                 12.000      1.414          4
 For entire sample                          9.000      3.643         12

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              90.00       9     10.00
 TRIAL                     56.00       2     28.00      2.80      .113

 (Model)                   56.00       2     28.00      2.80      .113 ns

 (Total)                  146.00      11     13.27

The result matches earlier calculations for a Between-S design. This analysis is incorrect because it

assumes that subject variability within groups is due to error. This gives, SSError = 90.0, which results in a

failure to reject the H0 that population means are equal (p = .113). Performing a full factorial design, as
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shown next, does not work because it leaves no source of variability for error. The main effects of T and S

and the T×S interaction use up all the N-1 = 11 df. Note that N equals the number of observations in Within-

S designs, not number of subjects. Each subject provides multiple observations. The /DESIGN option is used

below to make explicit the default factorial analysis. The correct Within-S analysis extracts main effects of T

and S, but uses the T×S interaction as the error; that is, SSError = SSTrial × Subject.

*Full-Factorial ANOVA (INCORRECT).

MANOVA agree BY trial(1 3) subj(1 4) /DESIGN trial subj trial BY subj.

 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 *   W A R N I N G   *  Too few degrees of freedom in RESIDUAL         *
 *                   *  error term for the following test(s) (DF = 0). *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 Source of Variation          SS      DF        MS         F  Sig of F
 RESIDUAL                    .00       0       .
 TRIAL                     56.00       2     28.00       .        .
 SUBJ                      60.00       3     20.00       .        . 'df=2+3+6=11
 TRIAL BY SUBJ             30.00       6      5.00       .        .

 (Model)                  146.00      11     13.27       .        . dfTotal=12-1=11
 (Total)                  146.00      11     13.27

To carry out the proper analysis with the Between-S format, SSs due to the main effects of Trial and

Subjects are calculated, and the remaining variability, SST×S, is error. That is, only main effects are entered on

the /DESIGN statement. Removing SSS reduces SSError relative to the Between-S analysis shown earlier. The

main effect of Trial becomes significant given the smaller error term despite the fact that the numerator is

unchanged and the loss of degrees of freedom. One important lesson about Within-S analyses is that they

differ from Between-S analyses in the denominators, not the numerators. Note that SSResidual = SSA×S.

*Main effects design for Within-S ANOVA in Between-S format (CORRECT).

MANOVA agree BY trial(1 3) subj(1 4) /DESIGN trial subj.

 Source of Variation          SS      DF        MS         F  Sig of F
 RESIDUAL                  30.00       6      5.00
 TRIAL                     56.00       2     28.00      5.60      .042
 SUBJ                      60.00       3     20.00      4.00      .070

 (Model)                  116.00       5     23.20      4.64      .044
 (Total)                  146.00      11     13.27

SSA×S is used as error because we don’t know why individual scores differ from what is expected on

the basis of main effects of A (Trial in our example) and S. Subject 1 scored 2 units lower on trial 1 than

expected given the main effects, but the reason is unknown. Subject 4 scored 2 units higher on trial 2 than

expected, again for unknown reasons. The interaction is unexplained random variation or error.

Within-S factors are not normally analyzed with data in Between-S format although that approach is
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sometimes useful, such as with missing data. Normally, however, data is instead entered with multiple

observations per case or subject, as for correlation analyses or the paired t-test. The ANOVA commands later

“create” the within-S factor, as illustrated in the next few examples. Data entry is shown first. Three scores

are entered per subject resulting in a data file with four rows (one per each subject) and three columns (one

score for each trial, named t1, t2, and t3).

*Data entry for Within-S Format.

DATA LIST FREE / t1 t2 t3.

BEGIN DATA

2 6 10   6 5 13   9 8 13   11 13 12

END DATA.

To conduct the Within-S analysis, MANOVA and GLM use /WSF (i.e., Within-S Factor) to identify

t1, t2, and t3 as levels of a Within-S factor. Considerable extra output is produced by both analyses,

especially GLM. The extra output is italicized below and omitted in later printouts. Critical results are in

bold.

*MANOVA (Note considerable extra output in italics).

MANOVA t1 t2 t3 /WSF = trial(3).

Tests of Between-Subjects Effects.

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              60.00       3     20.00     SSS dfS

 CONSTANT                 972.00       1    972.00     48.60      .006     ignore here

Tests involving 'TRIAL' Within-Subject Effect.

 Mauchly sphericity test, W =      .78667

 Chi-square approx. =              .47990 with 2 D. F.

 Significance =                      .787

 Greenhouse-Geisser Epsilon =      .82418

 Huynh-Feldt Epsilon =            1.00000

 Lower-bound Epsilon =             .50000

AVERAGED Tests of Significance that follow multivariate tests are equivalent to

univariate or split-plot or mixed-model approach to repeated measures.

Epsilons may be used to adjust d.f. for the AVERAGED results.

 EFFECT .. TRIAL

 Multivariate Tests of Significance (S = 1, M = 0, N = 0)

 Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F

 Pillais          .77220    3.38983       2.00       2.00       .228

 Hotellings      3.38983    3.38983       2.00       2.00       .228

 Wilks            .22780    3.38983       2.00       2.00       .228

 Roys             .77220

 Note.. F statistics are exact.

Tests involving 'TRIAL' Within-Subject Effect.

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              30.00       6      5.00    SST

 TRIAL                     56.00       2     28.00      5.60      .042    SST×S

The Between-Subjects Effect is variability due to Subjects, as calculated earlier. It serves as a
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denominator to test whether y&&G differs significantly from 0, which is often of no interest but not always. The

Within-S effect agrees with earlier calculations and with the proper analysis reported earlier with data in

Between-S format. The same results are shown below for GLM, again with much extra output, including

polynomial contrasts that are the default for Within-S factors. Much output consists of alternative analyses

appropriate if the assumptions for the Within-S design are violated.

*GLM - Note MUCH extra output; focus on Sphericity Assumed lines.

GLM t1 t2 t3 /WSF = trial 3.

Multivariate Tests(b)

 Effect                Value F        Hypothesis df Error df Sig. 

 TRIAL Pillai's Trace  .772  3.390(a) 2.000         2.000    .228 

       Wilks' Lambda   .228  3.390(a) 2.000         2.000    .228 

       Hotelling's     3.390 3.390(a) 2.000         2.000    .228 

       Trace                                                      

       Roy's Largest   3.390 3.390(a) 2.000         2.000    .228 

       Root                                                       

Within Subjects Design: TRIAL

Mauchly's Test of Sphericity(b)

Measure: MEASURE_1 

                 Mauchly's Approx.    df Sig. Epsilon(a)

                 W         Chi-Square

 Within Subjects                              Greenhouse-Geis Huynh-Feldt Lower-bound

 Effect                                       ser                                     

 TRIAL           .787      .480       2  .787 .824            1.000       .500        

Tests the null hypothesis that the error covariance matrix of the orthonormalized

transformed dependent variables is proportional to an identity matrix. 

Tests of Within-Subjects Effects

Measure: MEASURE_1 

 Source                          Type III Sum of df    Mean Square F     Sig. 

                                 Squares                                      

 TRIAL        Sphericity         56.000          2     28.000      5.600 .042 

              Assumed                                                      

              Greenhouse-Geisser 56.000          1.648 33.973      5.600 .057 

              Huynh-Feldt        56.000          2.000 28.000      5.600 .042 

              Lower-bound        56.000          1.000 56.000      5.600 .099 
                                                                           

 Error(TRIAL) Sphericity         30.000          6     5.000                  

              Assumed                                                      

              Greenhouse-Geisser 30.000          4.945 6.067                  

              Huynh-Feldt        30.000          6.000 5.000                  

              Lower-bound        30.000          3.000 10.000                 

 Source       TRIAL     Type III Sum of df Mean Square F      Sig. 
                        Squares                                    
 TRIAL        Linear    50.000          1  50.000      10.000 .051 
              Quadratic 6.000           1  6.000       1.200  .353 

 Error(TRIAL) Linear    15.000          3  5.000                   
              Quadratic 15.000          3  5.000                   
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Figure 7-1. First Within-S menu

Figure 7-2. Second Within-S menu

Transformed Variable: Average 
 Source    Type III Sum of df Mean Square F      Sig. 
           Squares                                    
 Intercept 972.000         1  972.000     48.600 .006 

 Error     60.000          3  20.000                  

For a Within-S design, GLM can be accessed from menus with:

Analyze | General Linear Model | Repeated Measures, which brings up

the menu in Figure 7-1. Click in the Within-Subject Factor Name box to

assign a name for the factor and in the Number of Levels box for the

number of levels. Trial and 3 would be entered for our study. Click Add

followed by Define to obtain the screen in Figure 7-2.

Figure 7-2 shows an empty frame for the Trial factor, with three

slots for scores. The t1, t2, and t3 scores can be entered by selecting and

moving them into the frame, either one at a time or all three at once if

scores are in the same order as their slots in the frame.

Once the Within-S factor has been filled with

variables, Between-S factors (see Chapter 9) or additional

aspects of the design can be requested. Click Ok to run

the analysis. GLM produces the following syntax, which

includes default values for several GLM options.

GLM  t1 t2 t3

  /WSFACTOR = trial 3 Polynomial

  /METHOD = SSTYPE(3)

  /CRITERIA = ALPHA(.05)

  /WSDESIGN = trial.

The /METHOD and /CRITERIA options specify

default values, as does the /WSDESIGN option, which

requests analysis for the main effect of trial. The /WSF

option specifies Polynomial contrasts, the default contrast for Within-S factors.

Whether MANOVA or GLM is used, the conclusion from the Within-S analysis is to reject H0: μ1 =

μ2 = μ3, and accept the alternative that one or more equality is false. This vague conclusion requires follow-up

analyses. Before turning to post hoc and planned analyses for this study, note again that the critical difference

between the Between-S and Within-S analyses is the error term. The numerator for testing the null hypothesis

is the same in both analyses, but different error terms are used. This is also also true for follow-up analyses;

same calculations for numerators of follow-up analyses, but unique denominators.
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Planned Contrasts

Partitioning the numerator SSA for planned contrasts is identical to the Between-S design, as

illustrated below with integer contrast coefficients. With normalized coefficients Llinear=-.7071 × 7.0 + 0 × 8.0

+ .7071 × 12=3.5355. Note that -.70712+02+.70712=1.0 and SSL=4×3.3552/1=50.00. But for Within-S designs,

the denominator (i.e., SSA×S = 30.0) is also partitioned to produce a unique Error term for each contrast.

Polynomial contrasts are appropriate for this study and are the default contrasts for Within-S factors in GLM.

1 2 3

y&&a 7.0 8.0 12.0   L  SS

Linear -1  0 +1  5.0  50.0 SSLinear =4×5
2/2

Quadratic -1 +2 -1 -3.0   6.0

     Σ 56.0 = SSA = SSTrial

For these contrasts, error is partitioned into linear and quadratic components. Because SSError is the

A×S interaction, the error is partitioned by computing contrasts for relevant components of the A×S

interaction. Note the relationship in the following SPSS analysis between the sum of the denominators for

each contrast and the overall A×S error term

The SPSS commands to perform planned contrasts for Within-S factors are identical or similar to

those for Between-S factors, but the output is quite different. One change for MANOVA is that single df

effects for Within-S factors use the SIGNIF(UNIVARIATE) option; that is, different keywords are used for

Within-S and Between-S factors to get single df tests. Also, the warning below from MANOVA informs

users that MANOVA automatically created orthogonal and normalized contrasts, which could mean that

aspects of analyses may not correspond to the requested contrasts unless they are orthogonal.

MANOVA t1 t2 t3 /WSF = trial(3) /PRINT = SIGNIF(UNIVARIATE)

  /CONTR(trial) = SPECIAL(1 1 1 -1 0 +1  -1 2 -1).

>Warning # 12252 in column 19.  Text: SPECIAL
>Special contrasts were requested for a WSFACTOR.  MANOVA automatically
>orthonormalizes contrast matrices for WSFACTORS.  If the special contrasts
>that were requested are nonorthogonal, the contrasts actually fitted are
>not the contrasts requested.  See the transformation matrix for the actual
>contrasts fitted.  Use TRANSFORM instead of WSFACTORS to produce
>nonorthogonal contrasts for within subjects factors.  Multivariate and
>averaged tests remain valid.

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              60.00       3     20.00
 CONSTANT                 972.00       1    972.00     48.60      .006

 Estimates for T1 --- Individual univariate .9500 confidence intervals
 CONSTANT
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper
        1   15.5884573    2.23607    6.97137     .00606    8.47229   22.70462
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Box 7-1. Within-S

contrast scores

Tests involving 'TRIAL' Within-Subject Effect.
...

 Univariate F-tests with (1,3) D. F.

 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F

 T2           50.00000   15.00000   50.00000    5.00000   10.00000       .051

 T3            6.00000   15.00000    6.00000    5.00000    1.20000       .353

 AVERAGED Tests of Significance for T using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              30.00       6      5.00
 TRIAL                     56.00       2     28.00      5.60      .042

 Estimates for T2 --- Individual univariate .9500 confidence intervals
 TRIAL
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t

        1   3.53553391    1.11803    3.16228     .05078 Normalized L

 Estimates for T3 --- Individual univariate .9500 confidence intervals
 TRIAL
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t

        1   -1.2247449    1.11803   -1.09545     .35339

The critical output appears as a summary table above the overall Trial effect and in the equivalent t-

tests that follow. The equivalence of F and t for corresponding contrasts is shown by equal p values and by F

= t2. SSTrial has been partitioned into Linear and Quadratic components, which appear in the Hypoth. SS

column. These agree with earlier calculations.

Similarly, SSError = SST×S has been partitioned into Linear and Quadratic components in the Error SS

column. The Error SS for T2 (the linear contrast) agrees with later calculations. Although SSError has been

divided equally here, generally the denominators for Within-S contrasts will not be identical, unlike Between-

S contrasts. This can result in outcomes that appear paradoxical; for example, an effect with a smaller

numerator could be significant and an effect with a larger numerator not, depending on their denominators.

Although the linear contrast captures most of the variability, resulting in a larger F than the omnibus

F, the effect is only marginally significant here. This outcome occurs because dfDenominator = 3 for the contrast

and df = 6 for the omnibus F. The loss of df is serious in this example given the extremely small sample size.

With more subjects, the impact of a smaller df is more modest.

There are several ways to conceptualize the error terms for the contrasts. One way, albeit a clumsy

one, is to actually partition the A×S interaction as done previously for the factorial

A×B interaction. The method is awkward because it requires contrast coefficients for

Subjects (which could have many levels) and for the factor, which are then

multiplied to produce A×S contrast coefficients. The process is illustrated in

Appendix 7-1.

A simpler and more easily generalized way to obtain unique denominators
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Box 7-2. Paired-Difference t-test

for contrasts is to compute a contrast score for each subject, and determine the variability in those contrast

scores, similar to difference scores for the paired-difference t-test. Calculations with normalized coefficients

(i.e., integer coefficients divided by the square root of the sum of the integer coefficients squared) correspond

better with all aspects of the SPSS output, although the ultimate statistics (F, t, p) are the same.

Box 7-1 shows the relevant formula. The following linear contrast uses normalized coefficients but

the final F would be the same with integer coefficients.

Linear (L)

1.   2   6 10 5.6569 = -.7071×2.0+0×6.0+.7071×10.0

2.   6   5 13 4.9497

3.   9   8 13 2.8284 L& = 3.5355

4. 11 13 12   .7071 SDL = 2.236

SSLin = 4 × (3.5355-0)2 = 50.0

SSError =(4-1)2.2362 =    15.00 = SSLin×Subj df = 4 - 1 = 3

FLinear = (50.0/1) / (15.0/3) = 50.0 / 5.0 = 10.0 %F = 3.1623

This procedure is a generalization of the paired-difference t-test, for which difference scores are

contrast scores (i.e., D = -1×y1 + 1×y2 for each subject) to test the significance of H0: μD = 0 given the mean

and standard deviation of the individual difference scores. The preceding contrast is identical to a paired-

difference t-test because the Linear contrast compares condition 3 to

condition 1. See below and Box 7-2 for relevant calculations.

T1 T3 D (D-D&)2

  2 10 8  9
  6 13 7  4
  9 13 4  1
 11 12 1 16

   D&=5.0   SSD= 30.0

More on Planned Contrasts in SPSS

In addition to the UNIVARIATE option, Within-S contrasts in MANOVA can use /WSDESIGN (or

the abbreviation /WSD) to request components of the Trial effect rather than the default omnibus effect.

/WSDESIGN is analogous to /DESIGN, but for Within-S factors. MANOVA does not allow Within-S factors

to be included on the /DESIGN option, or Between-S factors to be included on the /WSD option. A separate

summary table and t is presented for each contrast.

MANOVA t1 t2 t3 /WSF = trial(3) /CONTR(trial) = POLY /WSD trial(1) trial(2) /DESIGN.

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           60.00       3     20.00
 CONSTANT                 972.00       1    972.00     48.60      .006

Tests involving 'TRIAL(1)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN+RESIDUAL           15.00       3      5.00

 TRIAL(1)                  50.00       1     50.00     10.00      .051
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 Estimates for T2 --- Individual univariate .9500 confidence intervals
 TRIAL(1)
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t

        1       3.5355339059          1.11803          3.16228           .05078

Tests involving 'TRIAL(2)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN+RESIDUAL           15.00       3      5.00

 TRIAL(2)                   6.00       1      6.00      1.20      .353

 Estimates for T3  --- Individual univariate .9500 confidence intervals
 TRIAL(2)
  Parameter           Coeff.        Std. Err.          t-Value           Sig. t

        1       1.2247448714          1.11803          1.09545           .35339

The following t-test shows the equivalence of the linear contrast (-1 0 +1) to a paired- difference T-

test between trials one and three.

TTEST PAIR t1 t3.

...

                Mean           Std.      Std. Error    t   df  Sig.
                               Deviation Mean                  (2-tailed)
 Pair 1 T1 - T3 -5.000000      3.1622777 1.5811388   -3.162 3  .051

The corresponding GLM analysis appears below. The contrast is specified as part of the /WSF option,

rather than as a separate command. The results agree with earlier calculations and the MANOVA analysis.

GLM  t1 t2 t3  /WSFACTOR = trial 3 POLYNOMIAL.

Tests of Within-Subjects Effects
 Source                         Type III Sum of Squares df    Mean Square F     Sig. 
 TRIAL       Sphericity Assumed 56.000                  2     28.000      5.600 .042 
 Error(TIME) Sphericity Assumed 30.000                  6     5.000                  

Tests of Within-Subjects Contrasts
 Source      TRIAL     Type III Sum of Squares df Mean Square F      Sig. 
 TRIAL       Linear    50.000                  1  50.000      10.000 .051 
             Quadratic 6.000                   1  6.000       1.200  .353 

                  3 = 56.0 = SSTrial

 Error(TRIAL)Linear    15.000                  3  5.000                   
             Quadratic 15.000                  3  5.000                   

3 = 30.0 = SSError

Tests of Between-Subjects Effects
 Source    Type III Sum of Squares df Mean Square F      Sig. 
 Intercept 972.000                 1  972.000     48.600 .006 
 Error     60.000                  3  20.000                  

Several other features of GLM for Within-S factors merit brief mention. First, if a SPECIAL set of

contrasts is desired, then SPECIAL must include k 1s (as in MANOVA) followed by k-1 sets of k contrasts.

This is illustrated below. Second, SSs for the two contrasts in the following analysis do not sum to SSTrial.

GLM used the integer coefficients provided in the command rather than normalized coefficients but did not

adjust for the magnitude of the coefficients. The final Fs do agree, so the conclusions are the same. To obtain

© James M. Clark 2024



Analysis of Variance 7.12

SSs corresponding to the partitioning of SSTrial, normalized coefficients must be used. Third, the second

analysis below illustrates the MMATRIX option, which is to Within-S factors what LMATRIX is to

Between-S factors. However, the contrasts are specified somewhat differently. Normalized coefficients have

been used below to produce SSs that correspond to partitioning SSTrial. The output agrees with earlier results.

GLM t1 t2 t3 /WSF = trial 3 SPECIAL(1 1 1  -1 0 1  -1 2 -1).

...
Tests of Within-Subjects Effects
 Source                       Type III Sum of df    Mean Square F     Sig. 
                              Squares                                      
 trial        Sphericity      56.000          2     28.000      5.600 .042 
              Assumed                                                      
 Error(trial) Sphericity      30.000          6     5.000                  
              Assumed                                                      

Tests of Within-Subjects Contrasts
 Source       trial Type III Sum of df Mean Square F      Sig. 
                    Squares                                    

 trial        L1    100.000         1  100.000     10.000 .051 Fs correct

              L2    36.000          1  36.000      1.200  .353 

  3 = 136.0 … SSTrial

 Error(trial) L1    30.000          3  10.000                  
              L2    90.000          3  30.000                  

...   3 = 120.0 … SSError

GLM t1 t2 t3 /WSF = trial 3 /MMATRIX t1 -.70711  t2 0  t3 .70711.

...
Custom Hypothesis Tests

 L1          Contrast Estimate           3.536 t=3.536/1.118=3.163=%F
             Std. Error                  1.118           
             Sig.                        .051            

 Source   Sum of Squares df Mean Square F      Sig. 
 Contrast 50.000         1  50.000      10.000 .051 
 Error    15.000         3  5.000                   

As noted earlier, the parallel between the paired-difference t-test and the linear contrast provides some

insight into the nature of planned contrasts for Within-S factors. In essence, subjects are given scores that

represent how well their data corresponds to a predicted pattern, calculated by the following COMPUTES.

The average of these scores is compared to an expected value of 0 given the null hypothesis of no such

pattern in the data (i.e., µL = 0), with the variability in contrast scores providing the proper error term.

COMP nrlin = -.70711*t1 +      0*t2 +.70711*t3.

COMP nrqua = -.40825*t1 + .81650*t2 -.40825*t3.

LIST t1 t2 t3 nrlin nrqua.

      T1       T2       T3    NRLIN    NRQUA
  2.0000   6.0000  10.0000   5.6569    .0000
  6.0000   5.0000  13.0000   4.9498  -3.6743
  9.0000   8.0000  13.0000   2.8284  -2.4495
 11.0000  13.0000  12.0000    .7071   1.2247
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DESCR nrlin.

                    N Minimum Maximum Mean     Std. Deviation 
 NRLIN              4 .7071   5.6569  3.535550 2.2360782      

This gives all the information needed to carry out the planned linear contrast; that is,

SSContrast = 4×(3.53555-0)2 = 50.0 df = 1 MSContrast = 50.0

SSError    = (4-1)× 2.23607822 = 15.0 df = 3 MSError = 5.0 = 2.23607822

 F = 50.0/5.0 = 10.0 %10.0 = 3.162 = t (see below)

Alternatively, SPSS can perform t and F tests on the new scores. The single-sample t below

determines whether the average linear score differs significantly from 0. The MANOVA below, without any

Within-S or Between-S factors, illustrates one case when the test of whether y&&G differs from 0 is meaningful.

Because nrlin scores are contrast scores, their average should differ from 0 only by chance if there is no linear

relationship in the data. GLM could also carry out this test as follows: GLM nrlin. Note the equivalence of

the results: t2 = F, p = .051.

TTEST TESTVALU 0 /VARI nrlin.

       N Mean     Std. Deviation Std. Error Mean 

 NRLIN 4 3.535550 2.2360782      1.1180391       2.2360782/%4 = 1.118

           t         df   Sig.       Mean
                         (2-tailed)  Difference

     NRLIN 3.162     3    .051       3.535550 3.1622=10.0 = F

MANOVA nrlin.

 Tests of Significance for NRLIN using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              15.00       3      5.00
 CONSTANT                  50.00       1     50.00     10.00      .051

Post-Hoc Comparisons

Comparisons between pairs of means also require unique error terms, as just shown for the t3 vs t1

contrast. LSD comparisons are essentially paired t-tests without any adjustment, whereas various adjustments

are used for other procedures (e.g., Bonferroni). The SPSS /POSTHOC procedure is not available for Within-

S factors, so manual calculations may be necessary for some tests. GLM does allow a few options for post-

hoc comparisons of Within-S factors (i.e., LSD, Bonferroni, Sidak) in the EMMEANS option. For the SNK

and TUKEY procedures, one somewhat unorthodox procedure is to compute paired ts, multiply by %2 to

obtain the corresponding qs, and obtain critical values using appropriate stretches. 

The following GLM and TTEST analyses demonstrate that the LSD results produced by SPSS are

simply paired-difference t-tests. The final GLM shows that p values for BONFERRONI are 3 times the LSD

p values, as observed with Between-S factors.
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GLM  t1 t2 t3  /WSFACTOR = trial 3  /EMMEANS = TABLES(trial) COMPARE ADJ(LSD).

...
Estimated Marginal Means
 (I)   (J)   Mean Difference Std.  Sig.(a) 95% Confidence Interval for 
 trial trial (I-J)           Error         Difference(a)               
                                           Lower Bound     Upper Bound 

 1     2     -1.000          1.225 .474    -4.898          2.898       

       3     -5.000          1.581 .051    -10.032         .032        

 2     3     -4.000          1.871 .122    -9.954          1.954       

TTEST PAIR t1 t2 t3.

...
                Paired Differences                 t      df Sig.      
                                                                           (2-tailed)
                Mean           Std.      Std. Error 
                               Deviation Mean      
                                                   

 Pair 1 t1 - t2 -1.0000000     2.4494897 1.2247449 -.816  3  .474

 Pair 2 t1 - t3 -5.0000000     3.1622777 1.5811388 -3.162 3  .051      

 Pair 3 t2 - t3 -4.0000000     3.7416574 1.8708287 -2.138 3  .122      

GLM  t1 t2 t3  /WSFACTOR = trial 3  /EMMEANS = TABLES(trial) COMPARE ADJ(BONF).

...
Estimated Marginal Means  TRIAL
       Mean   Std. 
              Error
 TRIAL             
 1     7.000  1.958
 2     8.000  1.780
 3     12.000 .707  

Pairwise Comparisons
                     Mean Difference Std.  Sig.(a)
                     (I-J)           Error        
 (I) TRIAL (J) TRIAL                              

 1         2         -1.000          1.225 1.000  

           3         -5.000          1.581 .152   p = 3 × .051

 2         3         -4.000          1.871 .366   p = 3 × .122

Conclusions

Although the preceding analyses can be done using ANOVA and data in Between-S format or even

using REGRESSION, the analyses are messy because many indicator variables are required for large samples

and users would need to specify the appropriate denominator for tests. Do remember, however, that the

seeming “complexities” of error terms are in fact generalizations of prior principles (e.g., indicator variables

for main and interaction effects, partitioning interactions, variability in difference scores, ...).

Given the analysis of a single Within-S factor, notably the selection of appropriate error terms for

omnibus and follow-up analyses, chapter 8 considers factorial studies in which both factors are Within-S and

chapter 9 analyses for factorials with both Within-S and Between-S factors. Again, differences between

analyses for Within-S and Between-S factors will be the denominator or error terms for various effects.

Conceptualization and calculation of the numerators involved in factorial effects, such as interaction and

simple effects, are the same irrespective of the design.
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Appendix 7-1: Partitioning the A×S Interaction

The denominator for a Within-S factor is the interaction between the factor (A) and subjects (S),

which is partitioned along with the numerator for single df contrasts. As seen for factorial designs,

partitioning an interaction involves multiplying the contrast coefficients for both factors. The coefficients

used for the subject contrasts in a Within-S design are arbitrary, as long as they are orthogonal. The procedure

is illustrated below for the linear contrast; note that this operation is not used in practice because a large

number of contrasts would be required for any respectable number of subjects; for example, with 30 subjects

and a factor with 3 levels, we would need 29 contrasts for subjects and 29 contrasts for the linear × subjects

interaction. Instead of users having to generate contrasts, SPSS does the proper partitioning; however, the

logic is essentially that involved in partitioning interactions. The chapter shows a “better” way to

conceptualize the unique error terms, namely as variability in contrast scores for each subject.

S1 S2 S3 S4

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

  2   6 10   6   5 13   9   8 13 11 13 12

Lin -1   0   1 -1   0   1 -1   0   1 -1   0   1

S1 -3 -3 -3  1  1  1  1  1  1  1  1  1

S2  0  0  0 -2 -2 -2  1  1  1  1  1  1

S3  0  0  0  0  0  0 -1 -1 -1  1  1  1

 L

L×S1 +3  0 -3  -1  0  1  -1  0  1 -1  0  1 -12.0

L×S2   0  0  0 +2  0 -2  -1  0  1 -1  0  1 -  9.0

L×S3  0  0  0   0  0  0 +1  0 -1 -1  0  1 -  3.0

SSLin × Subj = SSL×S1 + SSL×S2 + SSL×S3 = (1×-122)/24 + (1×-92)/12 + (1×-32)/4 = 6.0+6.75+2.25 = 15.0

dfLin×Subj = 1 + 1 + 1 = 3 MSErrLin = 15.0 / 3 = 5.0
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CHAPTER 8 - WITHIN-S FACTORIAL

In a Within-S factorial design with A levels to factor A and B levels to factor B, observations in all

A×B cells are expected to correlate. In a cognitive study of two factors that influence detection of spelling

errors, for example, six participants read six passages containing 20 spelling errors. Three passages contained

easy errors (e.g., ryte for write), and three passages difficult errors (e.g., right for write). For each difficulty

level, one of three passages was read without interference, one read with low interference (soft noise in the

background), and one read with high interference (loud speech in the background). Detection of spelling

errors was expected to be higher for easy mistakes and to decrease with increasing interference, especially for

difficult errors.

Easy     Difficult
None Low High None Low High

Subject 1.   9   9   8     12   6   3
2.  10  10   9     12   8   4
3.   9   9   8     9   6   2
4.   8   6   7     9   6   3
5.   7   7   6     8   5   1
6.   8   7   7     7   5   2

The Difficulty (Easy, Difficult) and Interference (None, Low, High) factors are both Within-S because

each person contributed scores to all 2×3 = 6 cells or conditions. Scores are expected to correlate across the

six conditions given participants who recognize many or few errors in one condition should perform similarly

across conditions relative to other subjects. This study would also be a Within-S factorial if 36 people were

matched on a pretest of spelling ability, sorted into groups of six people with similar pretest scores, and one

person from each grouping of similar-ability people was randomly assigned to each condition. Under these

circumstances, scores are again expected to correlate across conditions, which warrants a Within-S factorial

analysis. Given 6 subjects and 6 scores per subject, there are N=36 observations.

A Within-S analysis considers Subjects (S) to be a third factor in the study. Given three factors, there

are three main effects (D, I, S), three two-way interactions (D×I, D×S, I×S), and one three-way interaction

(D×I ×S). That is, SSTotal is partitioned as follows:

Basic Calculations for Within-S Factorial

The three numerators for this design are calculated the same as for a Between-S or a Mixed factorial

(i.e., one Within-S and one Between-S factor discussed later). Cell means are arranged as previously and

calculations illustrated below.
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y&&di ndi = 6 Interference nd = 18

None Low High y&&d y&&d y&&G

Difficulty Easy 8.5 8.0 7.5 8.0 +1.0

Difficult 9.5 6.0 2.5 6.0 -1.0

ni=12 y&&i 9.0 7.0 5.0   y&&G = 7.0

y&&i - y&&G +2.0 0.0 -2.0   N = 36

SSDiff = 36.0 = 18(+12 + -12) df = 2-1 = 1

SSInt = 96.0 = 12(+22 + 02 + -22 df = 3-1 = 2

y&&G + (y&&d-y&&G) + (y&&i-y&&G) = y&&di
’ y&&di - y&&di

’

N L H N L H
Diff E 10 8 6 -1.5 0 +1.5

D  8 6 4 +1.5 0 -1.5

SSD×I = 54.0 = 6×(-1.5
2 + 02 + 1.52 + 1.52 + 02 + -1.52) df=(2-1)×(3-1) = 2

MSD = 36.0/1 = 36.0 MSI = 96.0/2 = 48.0 MSD×I = 54.0/2 = 27.0

The interaction effects above are deviations of observed cell means from cell means predicted from

just main effects. Alternatively, SSD×I could be obtained by subtracting main effects from cell means to

produce deviations from y&&G. SSs for the two main effects and the interaction are divided by their df to

produce MSs that are numerators for three omnibus tests: main effect of Difficulty, main effect of

Interference, and the Difficulty by Interference interaction. 

Instead of a single denominator for these tests as for Between-S factorials, Within-S factorials first

remove variability due to the main effect of Subjects (SSS) and then calculate separate interactions with

Subjects as appropriate error terms: SSD×S is the denominator for the Difficulty main effect, SSI×S for the

Interference main effect, and SSD×I×S for the Difficulty by Interference interaction. We first calculate SSS.

Easy Difficult ns = 6

None Low High None Low High y&&s y&&s-y&&G

Subj 1.   9   9   8    12   6   3 7.8333     .833

2. 10 10   9    12   8   4 8.8333  1.833

3.   9   9   8     9   6   2 7.1667     .167

4.   8   6   7     9   6   3 6.5000   -.500

5.   7   7   6     8   5   1 5.6667 -1.333

6.   8   7   7     7   5   2 6.0000 -1.000

SSS = 6×(.8332 + 1.8332 + ... + -1.002) = 42.67 df = 6 - 1 = 5

Calculating the three interaction terms involving Subjects is labour intensive, especially for studies

with many subjects. Even with just six subjects here, the Difficulty by Subject interaction requires 2×6 = 12

cell means averaged over the three levels of the Interference factor. This generates an Easy and Difficult

mean for each subject based on three scores (y&&ds, nds = 3). For subject one, the Easy mean would be (9+9+8)/3

= 5.967, and the Difficult mean (12+6+3)/3 = 7.00. Formulas for the interaction could be used to create

deviation scores for each of the 12 cells, which would be squared, summed, and multiplied by 3 to get SSD×S,
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df = (2 - 1)(6 - 1) = 5.

The Interference by Subject interaction requires 3×6 = 18 cell means averaged across the two levels of

Difficulty. This would generate a None, Low, and High mean for each subject based on two scores (y&&is, nis =

2). For subject one, the None mean would be (9+12)/2 = 10.50, the Low mean would be (9%6)/2 = 7.50, and

the High mean would be (8%3)/2 = 5.50. Interaction deviations would be calculated for each of the 12 cells,

squared, summed, and multiplied by 2 to get SSI×S, df = (3 - 1)(6 - 1) = 10.

The three way Difficulty by Interference by Subject interaction would most easily be calculated by

subtracting all the preceding sources of variability from SSTotal, as shown here. Happily SPSS procedures

determine the appropriate error terms, avoiding the preceding complications. It is important to appreciate,

however, what the denominators for Within-S effects represent.

SSD×I×S = SSTotal - SSD - SSI - SSD×I - SSS - SSD×S - SSI×S df = (2-1)(3-1)(6-1) = 10

SPSS Omnibus Analyses for Within-S Factorial

Data for Within-S Factorial designs is generally entered as multiple scores (variables) for each

subject, with one score for each cell in the A×B design. Here six scores are entered per person. Although

names for variables are arbitrary, it helps to label scores to indicate what levels of the two factors they

correspond to. This helps users specify for MANOVA and GLM which cell each score belongs to.

DATA LIST FREE / easnone easlow eashigh difnone diflow difhigh.

BEGIN DATA

 9  9  8    12  6  3 10 10  9    12  8  4  9  9  8     9  6  2

 8  6  7     9  6  3  7  7  6     8  5  1  8  7  7     7  5  2

END DATA.

How to assign scores to cells for SPSS is illustrated below. The variables are listed after the

MANOVA or GLM command in a certain order; the order below corresponds to their order in the dataset.

Scores are listed (shown below or in the order of the descriptive statistics produced by MANOVA) so that the

Difficulty factor changes from one level to the next more slowly than the Interference factor. That is,

Interference is said to be “nested” within levels of Difficulty. A /WSF option specifies how scores relate to

the six cells. Here, the /WSF option specifies Difficulty first (diff with two levels) followed by Interference

(int with three levels). If scores were listed with Difficulty nested within Interference, then the listing of

factors in the /WSF option would have to correspond to the new order. To illustrate, the correct SPSS

command would be: MANOVA easnone difnone easlow diflow eashigh difhigh /WSF = int(3) diff(2). SSs

and dfs below agree with earlier calculations.
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Figure 8-1. Within-S Menu.

Figure 8-2. Within-S Step 2

MANOVA easnone easlow eashigh difnone diflow difhigh

   /WSF = diff(2) int(3) /PRINT = CELL.

                           Mean  Std. Dev.         Diff Int

 Variable .. easnone       8.500      1.049        1 1

 Variable .. easlow        8.000      1.549        1 2

 Variable .. eashigh       7.500      1.049        1 3 Int nested in Diff

 Variable .. difnone       9.500      2.074        2 1

 Variable .. diflow        6.000      1.095        2 2

 Variable .. difhigh       2.500      1.049        2 3

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              42.67       5      8.53 = SSS

 CONSTANT                1764.00       1   1764.00    206.72      .000

Tests involving 'DIFF' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               4.00       5       .80 = SSD×S

 DIFF                      36.00       1     36.00     45.00      .001 = SSD

Tests involving 'INT' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               4.33      10       .43 = SSI×S

 INT                       96.00       2     48.00    110.77      .000 = SSI

Tests involving 'DIFF BY INT' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               5.00      10       .50 SSD×I×S

 DIFF BY INT               54.00       2     27.00     54.00      .000 SD×I

The syntax for GLM is similar to that for MANOVA, as shown later.

With menus, select Analyze | GLM | Repeated Measures to bring up the screen

in Figure 8-1. Specify the two Within-S factors and the number of levels for

each. In Figure 8-1, diff has already been added to the design and int is ready to

be added.

Select Define to proceed to the next screen shown in Figure 8-2. An

empty frame has been created for both Within-S factors and scores must be

moved into the proper cells of the design. Whether these can be entered

individually or as a set depends on the order of the variables in the dataset

and the order of the cells in the design. In the present example, the order of

variables in the data and the frame correspond, so they all could be

selected and moved together into the slots. If int and diff were created in

the opposite order on the preceding screen, it would be necessary to move

variables one at a time.

After the six variables have been placed in the frame and any

additional aspects of the design specified, Click OK to run the analysis.
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Given default values are included, the syntax generated will be more complex than required, as shown below.

GLM easnone easlow eashigh difnone diflow difhigh

  /WSFACTOR = diff 2 Polynomial  int  3 Polynomial

  /METHOD = SSTYPE(3)  /CRITERIA = ALPHA(.05)

  /WSDESIGN = diff int diff*int .

By default for Within-S designs, polynomial contrasts have been requested for both diff and int, even

though the former has only two levels. The default /WSDESIGN is a full factorial, with main effects for diff

and int and the diff*int interaction (diff*int is equivalent to diff BY int). GLM output is shown later.

Planned Contrasts for Main Effects

As for the Between-S factorial, follow-up analyses are generally required to interpret main and

interaction effects with df > 1. Both main effects are significant here but Difficulty does not require

additional analyses given df = 1. Given df = 2, the Interference main effect and the D×I interaction benefit

from further analyses. The various follow-up analyses involve calculations for the numerators that are

identical to the Between-S design, but different error terms are required. We start with planned contrasts.

Linear and quadratic contrasts are calculated below for the Interference effect, first using main effect

means averaged across Difficulty, and then using cell means. The correct n is important for the calculations

and is the number of observations per mean, not necessarily number of subjects. The main effect means for

Interference, for example, are based on two observations for each of six subjects, leading to ni = 12, whereas

the cell means involve one observation per subject, hence, ndi = 6.

     Interference

None Low High

Diff Easy 8.5 8.0 7.5

Difficult 9.5 6.0 2.5

y&&i 9.0 7.0 5.0 L SS ns = 12
Lin -1 0   1 -4.0 96.0 = 12×-42/2

Qua -1 2 -1   0.0   0.0

Sum = 96.0 = SSInterference

OR Easy Difficult

None Low High None Low High

y&&di 8.5 8.0 7.5 9.5 6.0 2.5 L SS ns = 6
Lin -1 0  1 -1 0  1 -8.0 96.0 = 6×-82/4

Qua -1 2 -1 -1 2 -1  0.0   0.0 = 6×02/12

The following MANOVA commands are equivalent to those for the single factor Within-S design.

The linear effect of Interference accounts for all of the variability due to interference and the quadratic

contrast accounts for none because the scores decrease in a strictly linear manner from None to Low to High.

That is, the means of 9.0, 7.0, and 5.0 decrease by two units for every one unit increase in Interference. The
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analysis also partitions the D×I interaction, discussed shortly.

Note below that the analysis has also partitioned the I×S denominator for the Interference effect

resulting in different denominators for the linear and quadratic effects. That is, SSI×S = 4.33 = 2.500 + 1.833.

MANOVA easnone TO difhigh /WSF = diff(2) int(3)

   /PRINT = SIGN(UNIV)  /CONTR(int) = POLY.

...

Tests involving 'INT' Within-Subject Effect.

 Univariate F-tests with (1,5) D. F.

 Variable  Hypoth. SS    Error SS  Hypoth. MS   Error MS           F    Sig. of F

 T3          96.00000     2.50000    96.00000     .50000   192.00000         .000

 T4            .00000     1.83333      .00000     .36667      .00000        1.000

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               4.33      10       .43 SSI×S

 INT                       96.00       2     48.00    110.77      .000

 Estimates for T3 --- Individual univariate .9500 confidence intervals

  Parameter           Coeff.   Std. Err.       t-Value           Sig. t

        1      -4.0000000000      .28868     -13.85641           .00004

 Estimates for T4 --- Individual univariate .9500 confidence intervals

  Parameter           Coeff.   Std. Err.       t-Value           Sig. t

        1        .0000000000      .24721        .00000          1.00000

Tests involving 'DIFF BY INT' Within-Subject Effect.
 Univariate F-tests with (1,5) D. F.
 Variable     Hypoth. SS    Error SS    Hypoth. MS   Error MS           F    Sig. of F
 T5             54.00000    2.50000       54.00000     .50000   108.00000         .000
 T6               .00000    2.50000         .00000     .50000      .00000        1.000

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS               5.00      10       .50
 DIFF BY INT               54.00       2     27.00     54.00      .000

Within-S contrasts were conceptualized earlier as individual contrast scores for each Subject, with a

test of the significance of the difference between the mean contrast score and 0 relative to the variability in

the contrast scores. This is illustrated below, using normalized coefficients to increase correspondences with

the analysis of variance. Integer contrast coefficients would produce the same final Fs and ps, but different

intermediate values (e.g., SSs). Note below that SSLinear = 6×(-4 - 0)2 = 96.0 and SSL×S = (6 - 1)×.7072 = 2.50.

As before, the test is a generalization of the paired difference t -test.

COMPUTE intlin = -.5*easnone+0*easlow+.5*eashigh+-.5*difnone+0*diflow+.5*difhigh.

LIST.

easnone easlow eashigh difnone diflow difhigh  intlin
   9.00   9.00    8.00   12.00   6.00    3.00   -5.00
  10.00  10.00    9.00   12.00   8.00    4.00   -4.50
   9.00   9.00    8.00    9.00   6.00    2.00   -4.00
   8.00   6.00    7.00    9.00   6.00    3.00   -3.50
   7.00   7.00    6.00    8.00   5.00    1.00   -4.00
   8.00   7.00    7.00    7.00   5.00    2.00   -3.00
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MANOVA intlin /PRINT = CELL.

                                    Mean  Std. Dev.    N
 For entire sample              -4.000       .707    6

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS               2.50       5       .50
 CONSTANT                  96.00       1     96.00    192.00      .000

SSL=6×(-4.0-0)
2 t = 4/(.707/%6) = 13.859 = %F

Planned contrasts are generated automatically for GLM, with the default contrasts being polynomial.

The output is shown below. Different contrasts would be specified following the factor name in the /WSF

option. As for contrasts in the single factor Within-S design, SSs for the partitioned effect may depend on

whether normalized or integer coefficients are used. For SPECIAL contrasts, k 1s must precede the k - 1 sets

of k coefficients that represent the contrast.

GLM easnone TO difhigh /WSF = diff(2) int(3).

...

Tests of Within-Subjects Contrasts

 Source          diff   int       Type III Sum of df Mean Square F       Sig.  
                                  Squares                                      
 diff            Linear           36.000          1  36.000      45.000  .001  
 Error(diff)     Linear            4.000          5    .800                      

 int                    Linear    96.000          1  96.000     192.000   .000  

                        Quadratic   .000          1    .000        .000  1.000 

 Error(int)             Linear     2.500          5    .500                      

                        Quadratic  1.833          5    .367                      

 diff * int      Linear Linear    54.000          1  54.000     108.000   .000  
                        Quadratic   .000          1    .000        .000  1.000 
 Error(diff*int) Linear Linear     2.500          5    .500
                        Quadratic  2.500          5    .500
...

Post Hoc Comparisons for Main Effects

Although GLM does not provide a full range of post hoc tests for Within-S factors, /EMMEANS can

be used to obtain LSD or BONFERRONI tests, as illustrated below for the default LSD option.

GLM easnone TO difhigh /WSF = diff(2) int(3)

  /EMMEANS = TABLES(int) COMPARE(int) ADJ(LSD).

...
Estimated Marginal Means
 int  Mean  Std.  95% Confidence Interval     
            Error Lower Bound     Upper Bound 
 1    9.000 .606  7.443           10.557      
 2    7.000 .500  5.715           8.285       
 3    5.000 .408  3.951           6.049       

Pairwise Comparisons
 (I)  (J)  Mean Difference Std.  Sig.(a)
 int  int  (I-J)           Error        
                                        

 1    2    2.000(*)        .258  .001   t=2.0/.258 = 7.752

      3    4.000(*)        .289  .000   
 2    3    2.000(*)        .258  .001   
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In the single factor Within-S design, the post hoc tests were essentially paired difference t-tests. This

is also true for the factorial design, but using Interference means averaged across the levels of Difficulty.

Except for rounding, t values correspond to ts obtained by dividing Mean Difference by Std. Error in the

preceding GLM, and the p values in the analyses correspond. Although frowned on by some statisticians, ts

could be converted to qs to conduct SNK or Tukey tests.

COMPUTE none = MEAN(easnone, difnone).

COMPUTE low  = MEAN(easlow, diflow).

COMPUTE high = MEAN(eashigh, difhigh).

TTEST PAIRED none low high.

...
             Paired Differences                       t      df   Sig.
                                                                  (2-tailed)
                    Mean    Std.      Std. Error
                            Deviation Mean      

 Pair 1 none - low  2.00000 .63246    .25820    7.746   5  .001

 Pair 2 none - high 4.00000 .70711    .28868       13.856   5  .000
 Pair 3 low - high  2.00000 .63246    .25820      7.746   5  .001

Follow-Up Analyses for the Interaction

Follow-up analyses for the interaction include partitioning the interaction, simple effects, or both.

Calculations of numerators are the same as for Between-S factorial designs, but unique error terms are

required. As with previous Within-S contrasts, the unique error terms are best thought of as variability in

contrast scores for each subject. Partitioning the interaction is shown first. Partitioning of the numerator is

illustrated below.

Easy     Difficult
None Low High None Low High

y&&di 8.5 8.0 7.5 9.5 6.0 2.5 L SS

Main Effect of Difficulty
Dif -1 -1 -1  1  1  1

Main Effect of Interference
Lin -1  0   1 -1  0  1
Qua -1  2 -1 -1  2 -1

Difficulty × Interference Interaction
D×Lin  1  0 -1 -1  0  1 -6.0 54.0 = 6×62/4
D×Qua  1 -2   1 -1  2 -1  0.0   0.0

         3 = 54.0 = SSD×I

The partitioning of the interaction was produced automatically in earlier MANOVA and GLM

analyses. Relevant output is presented below. The denominators and their df have been partitioned as well as

the numerators. These unique denominators, which happen to be equal in this example, represent variability

in individual contrast scores, as shown following the MANOVA.
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MANOVA easnone TO difhigh /WSF=diff(2) int(3) /PRINT=SIGN(UNIV) /CONTR(int)=POLY.

...
Tests involving 'DIFF BY INT' Within-Subject Effect.

 Univariate F-tests with (1,5) D. F.

 Variable   Hypoth. SS    Error SS  Hypoth. MS    Error MS            F    Sig. of F

 T5           54.00000    2.50000   54.00000        .50000    108.00000         .000

 T6             .00000    2.50000     .00000        .50000       .00000        1.000

...

*Normalized coefficients.

COMPUTE difxlin = .5*easnone+0*easlow+-.5*eashigh+-.5*difnone+0*diflow+.5*difhigh.

LIST easnone TO difhigh difxlin.

easnone easlow eashigh difnone diflow difhigh difxlin
   9.00   9.00    8.00   12.00   6.00    3.00   -4.00
  10.00  10.00    9.00   12.00   8.00    4.00   -3.50
   9.00   9.00    8.00    9.00   6.00    2.00   -3.00
   8.00   6.00    7.00    9.00   6.00    3.00   -2.50
   7.00   7.00    6.00    8.00   5.00    1.00   -3.00
   8.00   7.00    7.00    7.00   5.00    2.00   -2.00

MANOVA difxlin /PRINT = CELL.

 Variable .. difxlin                         Mean  Std. Dev.    N  

 For entire sample                         -3.000       .707    6  

 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               2.50       5       .50 SSD×L×S = .707
2(6-1)

 CONSTANT                  54.00       1     54.00    108.00      .000 SSD×L = 6(-3.0-0)
2

GLM easnone TO difhigh /WSF = diff(2) int(3).

...

Tests of Within-Subjects Contrasts

...
 Source          diff   int       Type III Sum of df Mean Square    F      Sig.  
                                  Squares                                      
 diff * int      Linear Linear    54.000           1  54.000      108.000   .000  
                        Quadratic   .000           1    .000         .000  1.000 
 Error(diff*int) Linear Linear     2.500           5    .500                      
                        Quadratic  2.500           5    .500                      
...

A second way to partition the interaction in GLM uses /MMATRIX. List the variables corresponding

to the six cells, with each score followed by the appropriate contrast coefficient, normalized here so that SSs

agree with earlier analyses as well as the final tests of significance.

GLM easnone TO difhigh /WSF = diff(2) int(3)

  /MMATRIX easnone .5 easlow 0 eashigh -.5 difnone -.5 diflow 0 difhigh .5.

...

 L1          Contrast Estimate           -3.000          

             Std. Error                  .289            t = 3.0/.289 = 10.381 

             Sig.                        .000            

 Source   Sum of Squares df Mean Square F       Sig. 

 Contrast 54.000         1  54.000      108.000 .000 F = 10.3812 = t2

 Error    2.500          5  .500
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To appreciate why the Difficulty by Linear component of the interaction accounts entirely for SSD×I,

compare the interaction deviations used to calculate SSD×I to the contrast coefficients (or their reverse). The

interaction deviations below correspond perfectly with contrast coefficients (the integers below with signs

changed to make comparison easier).

      Interference

None Low High y&&d y&&d - y&&G

Difficulty Easy 8.5 8.0 7.5 8.0 +1.0
Difficult 9.5 6.0 2.5 6.0  -1.0

y&&i 9.0 7.0 5.0     y&&G 7.0
y&&i-y&&G +2.0 0 -2.0

Expected from Main Effects Difference = Interaction Interaction Contrast Coeff.

10.0 8.0 6.0  -1.5   0 +1.5 -1 0  1

  8.0 6.0 4.0 +1.5   0  -1.5  1 0 -1

Simple Effects Analysis for Within-S Interaction

The second approach to follow-up for interactions tests the simple effects of one factor at each level

of the other factor. The calculations below determine the overall simple effect of int at the Difficult level of

diff, and partition the df = 2 simple effect into linear and quadratic components.

      Interference

None Low High y&&d

Difficult 9.5 6.0 2.5 6.0
y&&di-y&&d -3.5 0 +3.5

SSIwDifficult = 6×(-3.52 + 02 + 3.52) = 147.0

Easy Difficult

None Low High None Low High

y&&di 8.5 8.0 7.5 9.5 6.0 2.5 L SS

Lin 0 0 0 -1 0 1 -7.0 147.0 = 6×-72/2

Qua 0 0 0 -1 2 -1   0.0     0.0

Sum = 147.0 = SSIwDifficult

The following MANOVA produces the overall simple effects analysis for Easy and Difficult

conditions, as well as numerators and denominators partitioned into linear and quadratic components of the

simple effects. One anomaly discussed later is the lack of error variability for the linear effect of Interference

for Easy items. As for Between-S factorial designs, simple effects analyses represent a new partitioning of

SSTotal, specifically:  SSIwD(1) + SSIwD(2) = 3.0 + 147.0 = 150.0 = SSI + SSD×I = 96.0 + 54.0.
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MANOVA easnone TO difhigh /WSF = diff(2) int(3) /PRINT = SIGN(UNIV)

  /CONTR(diff) = POLY  /WSD = diff int WITHIN diff(1) int WITHIN diff(2).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           42.67       5      8.53
 CONSTANT                1764.00       1   1764.00    206.72      .000

Tests involving 'DIFF' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL            4.00       5       .80
 DIFF                      36.00       1     36.00     45.00      .001

Tests involving 'INT WITHIN DIFF(1)' Within-Subject Effect.

 Univariate F-tests with (1,5) D. F.
 Variable    Hypoth. SS    Error SS       Hypoth. MS   Error MS                    F        Sig. of F

 T3             3.00000      .00000          3.00000     .00000     3377699720527874             .000

 T4              .00000     2.33333           .00000     .46667               .00000            1.000

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL            2.33      10       .23
 INT WITHIN DIFF(1)         3.00       2      1.50      6.43      .016

Tests involving 'INT WITHIN DIFF(2)' Within-Subject Effect.

 Univariate F-tests with (1,5) D. F.
 Variable    Hypoth. SS    Error SS    Hypoth. MS     Error MS            F    Sig. of F

 T5           147.00000     5.00000     147.00000      1.00000    147.00000         .000

 T6              .00000     2.00000        .00000       .40000       .00000        1.000

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL            7.00      10       .70
 INT WITHIN DIFF(2)       147.00       2     73.50    105.00      .000

Linear contrast scores for the simple effects reveal the nature of the error terms and also why the

linear effect of Interference for Easy items showed no variability. Here are the relevant computations.

Everybody has exactly the same score for linweasy; there is no variability in these scores. This occurs because

eashigh is one unit lower than easnone for all six participants.

COMPUTE linwdiff = 0*easnone+0*easlow+0*eashigh+-.7071*difnone+0*diflow+.7071*difhigh.

COMPUTE linweasy = -.7071*easnone+0*easlow+.7071*eashigh+0*difnone+0*diflow+0*difhigh.

LIST easnone TO difhigh linwdiff linweasy.

easnone easlow eashigh difnone diflow difhigh linwdiff linweasy
 9.0000 9.0000  8.0000  12.000 6.0000  3.0000  -6.364   -.7071
 10.000 10.000  9.0000  12.000 8.0000  4.0000  -5.657   -.7071
 9.0000 9.0000  8.0000  9.0000 6.0000  2.0000  -4.950   -.7071
 8.0000 6.0000  7.0000  9.0000 6.0000  3.0000  -4.243   -.7071
 7.0000 7.0000  6.0000  8.0000 5.0000  1.0000  -4.950   -.7071
 8.0000 7.0000  7.0000  7.0000 5.0000  2.0000  -3.536   -.7071

MANOVA linwdiff linweasy /PRINT = CELL.

 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 *   W A R N I N G   * These variables have NO variance ...            *
 *                   *   linweasy                                      *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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                          Mean  Std. Dev.    N  

 Variable .. linwdiff   -4.950      1.000    6   SE=1.0/%6=.408   t=4.95/.408=12.13

 Variable .. linweasy    -.707       .000    6  t2=12.132=147.14.F

 Univariate F-tests with (1,5) D. F.
 Variable    Hypoth. SS    Error SS   Hypoth. MS   Error MS                F    Sig. of F

 linwdiff     146.99718     4.99990    146.99718     .99998        147.00000         .000

 linweasy       2.99994      .00000      2.99994     .00000  1.415024692E+31         .000

The standard F test for the overall simple effects of Within-S factors cannot be obtained by

/EMMEANS, as done for the Between-S factorial. GLM instead provides Multivariate statistics for the

simple effects of Within-S factors, along with pairwise comparisons at each level of the other factor.

GLM  easnone easlow eashigh difnone diflow difhigh

  /WSFACTOR = diff 2 Polynomial int 3 Polynomial

  /EMMEANS = TABLES(diff*int) COMPARE(int).

...
Estimated Marginal Means
diff * int
Pairwise Comparisons
 diff (I)  (J)  Mean Difference Std.  Sig.(a) 
      int  int  (I-J)           Error         
                                              
 1    1    2    .500            .342  .203    
           3    1.000           .000  .       
      2    3    .500            .342  .203    

 2    1    2    3.500(*)        .563  .002    
           3    7.000(*)        .577  .000    
      2    3    3.500(*)        .224  .000    

Multivariate Tests
 diff                 Value  F          Hypothesis df Error df Sig. 
 1    Pillai's trace  .300   2.143(a)   1.000         5.000    .203 
      Wilks' lambda   .700   2.143(a)   1.000         5.000    .203 
      Hotelling's     .429   2.143(a)   1.000         5.000    .203 
      trace                                                         
      Roy's largest   .429   2.143(a)   1.000         5.000    .203 
      root                                                          
...

One way to do a simple effects analysis in GLM is to conduct two single-factor analyses, one for each

level of Difficulty. This analysis is shown below for the Difficult level of the Difficulty factor. Note the

correspondence to the MANOVA results.

GLM  difnone diflow difhigh /WSFACTOR = int 3 Polynomial.

...  
Tests of Within-Subjects Effects
 Source                      Type III Sum of df    Mean Square F       Sig. 
                             Squares                                        
 int         Sphericity      147.000         2     73.500      105.000 .000 
 Error(int)  Sphericity      7.000           10    .700                     
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Tests of Within-Subjects Contrasts
 Source      int       Type III Sum of df Mean Square F       Sig.  
                       Squares                                      
 int         Linear    147.000         1  147.000     147.000 .000  
             Quadratic .000            1  .000        .000    1.000 
 Error(int)  Linear    5.000           5  1.000                     
             Quadratic 2.000           5  .400                      

Tests of Between-Subjects Effects
 Source    Type III Sum of df Mean Square F       Sig. 
           Squares                                     
 Intercept 648.000         1  648.000     124.615 .000 
 Error     26.000          5  5.200                    

The /MMATRIX option in GLM can also be used to obtain simple effects, as shown below.

GLM easnone easlow eashigh difnone diflow difhigh /WSF = diff(2) int(3)

  /MMATRIX easnone 0 easlow 0 eashigh 0 difnone -.7071 diflow 0 difhigh .7071.

...
Custom Hypothesis Tests

 L1          Contrast Estimate           -4.950         t = 4.95/.408 = 12.13

             Std. Error                    .408
             Sig.                          .000

 Source   Sum of Squares df Mean Square F       Sig. 

 Contrast 146.997        1  146.997     147.000 .000    %F = 12.12 = t

 Error    5.000          5  1.000                    

Conclusions

The Within-S factorial presents a few complications, notably in determining appropriate error terms.

All operations on the numerator side are calculated exactly as for Between-S factorials, including main

effects and interaction for the omnibus ANOVA, follow-up analyses of main effects, and both partitioning

and simple effects approaches to the interaction. This is also the case for mixed designs, involving one

Within-S and one Between-S factor. Given the appropriate commands for the design, SPSS computes the

proper error terms.
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Appendix 8-1: Within-S Factorial in Between-S Format

Below the data is entered and re-analyzed in Between-S format; that is, the data file contains one

observation per case along with codes for Difficulty (diff), Interference (int), and Subject (subj). 

*Data in Between-s format.

DATA LIST FREE / subj diff int score.

BEGIN DATA

  1 1 1  9    1 1 2  9    1 1 3  8    1 2 1 12    1 2 2  6    1 2 3  3

  2 1 1 10    2 1 2 10    2 1 3  9    2 2 1 12    2 2 2  8    2 2 3  4

  3 1 1  9    3 1 2  9    3 1 3  8    3 2 1  9    3 2 2  6    3 2 3  2

  4 1 1  8    4 1 2  6    4 1 3  7    4 2 1  9    4 2 2  6    4 2 3  3

  5 1 1  7    5 1 2  7    5 1 3  6    5 2 1  8    5 2 2  5    5 2 3  1

  6 1 1  8    6 1 2  7    6 1 3  7    6 2 1  7    6 2 2  5    6 2 3  2

END DATA.

The MANOVA below requests the full factorial, which uses all degrees of freedom. It shows seven

terms from the Within-S factorial, including the Subj by Diff by Int three-way interaction. Find the rows that

match the previous MANOVA and later GLM output.

MANOVA score BY subj(1 6) diff(1 2) int(1 3).

 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 *   W A R N I N G   *  Too few degrees of freedom in RESIDUAL         *
 *                   *  error term for the following test(s) (DF = 0). *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 Source of Variation          SS      DF        MS         F  Sig of F
 RESIDUAL                    .00       0       .
 subj                      42.67       5      8.53       .        .
 diff                      36.00       1     36.00       .        .
 int                       96.00       2     48.00       .        .
 subj BY diff               4.00       5       .80       .        .
 subj BY int                4.33      10       .43       .        .
 diff BY int               54.00       2     27.00       .        .
 subj BY diff BY int        5.00      10       .50       .        .

 (Model)                  242.00      35      6.91       .        .
 (Total)                  242.00      35      6.91

With data in Between-S format, GLM can calculate the three-way Difficulty by Interference by

Subjects interaction. SSD×I×S equals the squared deviations of observed scores from values predicted from

three main effects and three two-way interactions, as shown below.

GLM score BY diff int subj
 /DESIGN diff int subj   diff BY int   diff BY subj   int BY subj
 /SAVE PRED(prd2way).
...
COMPUTE DxIxS = score - prd2way.
COMPUTE DxIxS2 = dis**2.

DESCR DxIxS2 /STAT = SUM.
                 N  Sum    

 dis2            36 5.0000 SSD×I×S
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CHAPTER 9 - MIXED FACTORIAL ANOVA

A mixed-factorial design (also known as a split-plot design) involves at least two factors, one or more

Within-S factors and one or more Between-S factors. The proper analysis combines Between-S and Within-S

designs. In the present study, educational psychologists examined the effects on later reading performance of

a pre-school program (prog): program one was a control group with no pre-school intervention, program two

was a pre-school group that emphasized social experiences rather than academic preparedness, and program

three was an academic preparedness pre-school program that developed skills relevant to later reading (e.g.,

phonics awareness). Fifteen schools from disadvantaged areas were randomly assigned to conditions (5

schools per program). Reading tests were administered prior to the intervention (Pre or Time 1), in Grade 1

(G1 or Time 2), and in Grade 5 (G5 or Time 3). Researchers predicted that only Prog 3 would affect reading

performance and that the benefits would persist across grades. In this study, the five schools in each condition

are “subjects,” program is Between-S, and time of testing is Within-S. 

Calculations for Default Mixed Factorial ANOVA

Numerator SSs and dfs for main effects and interaction are calculated as for all factorial designs. The

means for the nine cells (3×3) permit calculation of the numerators.

y&&pt npt = 5         Time

Pre G1 G5 y&&p   y&&p-y&&G  np = 15

1 11.4 10.0 11.6 11.000    .311

Prog 2  9.0 10.2  7.6  8.933  -1.756

3  9.6 13.6 13.2 12.133   1.444

y&&t 10.000 11.267 10.800  y&&G = 10.689

y&&t-y&&G  -.689   .578   .111

nt = 15

SSProg = 78.98 = 15(.311
2 + -1.7562 + 1.4442) df = 3 - 1 = 2

SSTime = 12.32 = 15(-.689
2 +.5782 + .1112) df = 3 - 1 = 2

SSP×T = 60.76= 5[{11.4 - (10.689 + .311 - .689)}
2 + {10.0 - (10.689 + .311 +

.578)}2 ...]

     = 5[{(11.4 - -.689 -.311)-10.689}2+{10.0-.578 - -1.756} -10.689}2 ...]

= 5(1.0892 +.7562 + -1.8442+ -1.5782+.6892+.8892+.4892+ -1.4442 +.9562)

df = (3 - 1)(3 - 1) = 4

A Between-S Error (Subjects Within Program) term is used for the Between-S factor prog and a

Within-S Error (Time By Subjects Within Program) for the Within-S factor time and the interaction. SSSubjects

cannot be calculated across all 15 subjects (schools) because the five schools in each program are unrelated

and SSSubjects would include program variability. It is appropriate, however, to calculate variability due to

Subjects Within each Program level (i.e., SSSwP1, SSSwP2, SSSwP3) and aggregate these SSs to obtain SSSwP, as

done for the Between-S single factor design. SSSwP has df = (5-1) + (5-1) + (5-1) = 12 and provides the error
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Figure 9-1. Graph of results

for prog.

It is also inappropriate to calculate an overall Time by Subject interaction, because variability

associated with both Program and the Time by Program interaction would contribute. But a Time by Subject

interaction can be calculated Within each level of Program (i.e., SS(T×S)wP1, SS(T×S)wP2, SS(T×S)wP3), and

aggregated to obtain SS(T×S)wP. SS(T×S)wP would have df = (5-1)(3-1) + (5-1)(3-1) + (5-1)(3-1) = 24, and

provides the error term for time and the time by prog interaction; that is, for effects that involve the Within-S

time factor.

The data is entered into SPSS with a treatment code for the

Between-S program factor, and three scores, one for each level of the

Within-S time factor. An optional subject code is included below. The

MANOVA and GLM commands combine Between-S (BY) and Within-

S (/WSF) commands. EMMEANS is used to obtain means not provided

by the default GLM but useful for analyzing numerators and

interpreting results. A graph of the interaction is also requested (see

Figure 9-1). The graph suggests that the results are consistent with

expectation. Subjects in program 3 improved from time 1 to time 2 and

maintained the improvement to time 3. The results for the other two

groups vary and show no particular pattern across time. Averaged together they show a flat pattern, no change

over Time. The predicted interaction is close to significant, p = .053.

DATA LIST FREE / prog subj pre g1 g5.

BEGIN DATA

1 1 11  9  9 1 2 11 14 12 1 3  8  5 10 1 4 15 13 13 1 5 12  9 14

2 1 11 13  7 2 2 12 12  9 2 3  5  7  9 2 4  8  8  8 2 5  9 11  5

3 1 14 14 14 3 2  7 14 19 3 3 10 14  8 3 4  7 12 13 3 5 10 14 12

END DATA.

GLM pre g1 g5 BY prog /WSF = time(3) /PRINT = DESCR /PLOT = PROFILE(time*prog)

  /EMMEANS = TABLE(OVERALL)  /EMMEANS = TABLE(prog).

     prog  Mean    Std. Deviation N  
 pre 1.00  11.4000 2.50998        5  
     2.00  9.0000  2.73861        5  
     3.00  9.6000  2.88097        5  
     Total 10.0000 2.72554        15 

 g1  1.00  10.0000 3.60555        5 
     2.00  10.2000 2.58844        5 
     3.00  13.6000 .89443         5  
     Total 11.2667 2.96327        15
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 g5  1.00  11.6000 2.07364        5  
     2.00  7.6000  1.67332        5  
     3.00  13.2000 3.96232        5  
     Total 10.8000 3.52947        15 

Tests of Within-Subjects Effects
 Source                      Type III SS     df     Mean Square F     Sig. 
 time        Sphericity      12.311          2      6.156       1.106 .347 
 time * prog Sphericity      60.756          4      15.189      2.729 .053 

 Error(time) Sphericity      133.600         24     5.567  SS(T×S)wP

Tests of Between-Subjects Effects
 Source    Type III SS     df Mean Square F       Sig. 
 Intercept 5141.356        1  5141.356    482.002 .000 
 prog      78.978          2  39.489      3.702   .056 

 Error     128.000         12 10.667  SSSwP

Estimated Marginal Means
1. Grand Mean
 Mean   Std.      
        Error
 10.689 .487 

2. prog
 prog Mean  
            
 1.00 11.000
 2.00 8.933 
 3.00 12.133

The plot and the ANOVA suggest that the reading program was successful. The time by prog

interaction is marginally significant and could benefit from a more specific analysis. Also, the plot shows that

the reading group performed better than the other groups in grades 1 and 5. Here is the equivalent MANOVA.

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             128.00      12     10.67
 prog                      78.98       2     39.49      3.70      .056

Tests involving 'TIME' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             133.60      24      5.57
 TIME                      12.31       2      6.16      1.11      .347
 prog BY TIME              60.76       4     15.19      2.73      .053

Examining degrees of freedom helps to appreciate the nature of the error terms. Each level of prog

has five subjects with df = 5-1 = 4 for SwP1, SwP2, and SwP3. Adding these together gives dfError = 3×(5-1) =

12 for SwP, as shown above for the Between-S error. Similarly, each level of prog has df = (3-1)(5-1) = 8 for

(T×S)wP1, (T×S)wP2, and (T×S)wP3. Adding these gives dfError = 3×(3-1)(5-1) = 24 for (T×S)wP, as shown

above for the Within-S error.
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Conceptualizing the Error Terms

Although calculating SSs for the denominators manually would be a challenge, SPSS can produce

quantities for single factor Within-S designs (i.e., SSSubjects and SSTreatment×Subjects) at each level of prog, which

can then be summed to obtain denominators for the mixed factorial. The ultimate values needed are SSSwP =

128.0 (the denominator for prog) and SS(T×S)wP = 133.60 (the denominator for time and the time by prog

interaction). Three single factor Within-S analyses, one for each level of prog, can be produced with the

SPLIT FILE command, as below. Note that the dfs for the denominators sum appropriately as do the SSs. If

the time effect was partitioned for each single factor Within-S design, then the denominators would also be

partitioned and they could be summed to obtain errors for a mixed factorial ANOVA in which time and time

× prog effects were partitioned.

SPLIT FILE BY prog.

MANOVA pre g1 g5 /WSF = time(3).

prog:    1.00
Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              66.67       4     16.67 SSSwP1

 CONSTANT                1815.00       1   1815.00    108.90      .000
Tests involving 'TIME' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              27.73       8      3.47 SS(T×S)wP1

 TIME                       7.60       2      3.80      1.10      .380

prog:    2.00
Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              33.60       4      8.40 SSSwP2

 CONSTANT                1197.07       1   1197.07    142.51      .000
Tests involving 'TIME' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              34.40       8      4.30 SS(T×S)wP2

 TIME                      16.93       2      8.47      1.97      .202

prog:    3.00
Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              27.73       4      6.93 SSSwP3

 CONSTANT                2208.27       1   2208.27    318.50      .000
Tests involving 'TIME' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              71.47       8      8.93 SS(T×S)wP3

 TIME                      48.53       2     24.27      2.72      .126

SPLIT FILE OFF.

SSSwP = 128.0 = SSSwP1 + SSSwP2 + SSSwP3 = 66.67 + 33.60 + 27.73

df = 3×(5-1) = 12

SS(T×S)wP = 133.60 = SS(T×S)wP1 + SS(T×S)wP2 + SS(T×S)wP3 = 27.73 + 34.40 + 71.47

df = 3×(3-1)(5-1) = 24

The nature of these error terms can also be shown with the data in Between-S format. Appendix 9-1
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demonstrates with data in Between-S format that the error terms are indeed subj WITHIN prog and time BY

subj WITHIN prog.

Planned Contrasts for Main Effects 

The results can be analyzed further by planned contrasts for time, especially 1 versus 2&3, and prog,

especially 1&2 versus 3, given the prediction that the reading readiness approach would be most effective.

Numerators for the contrasts are calculated as usual. Cell means are used below to partition the main effects,

rather than row or column means, and will be used later to generate contrasts to partition the interaction.

T1P1 T1P2 T1P3 T2P1 T2P2 T2P3 T3P1 T3P2 T3P3
11.4   9.0  9.6 10.0 10.2 13.6 11.6  7.6 13.2 L SS = njL

2/3cj
2

Time
 T1 -2 -2 -2  1  1  1 1 1  1  6.2 10.678 = 5×6.22/18
 T2  0  0  0 -1 -1 -1 1 1  1 -1.4  1.633

3 = SSTime

Program
 P1 -1 -1  2 -1 -1  2 -1 -1  2 13.0 46.944
 P2 -1  1  0 -1  1  0 -1  1  0 -6.2 32.033

3 = SSProgram

The following MANOVA presents the results of these contrasts. The partitioning for the Within-S

factor time is specified on the /WSD option, and the partitioning for the Between-S factor prog is specified on

the /DESIGN option. The results include partitioned main effect numerators, as calculated above. Note that

the denominator or error for the Between-S factor is not partitioned, whereas the error for the Within-S factor

is. This parallels previous analyses for Within-S and Between-S factors. The primary interest in this study is

the interaction, but focus first on the main effects shown in bold. The Program main effect, overall p = .056, 

did not benefit from the partitioning because SSProgram for the numerator was divided close to equally between

the two contrasts. The Time main effect, overall p = .347, did benefit because most of SSTime loaded on the

first contrast, df = 1, and the error was somewhat smaller, producing p = .152 for performance at time one

before training compared to performance at times two and three after training. 

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3)

  /CONTR(time) = SPEC(1 1 1  -2  1 1   0 -1 1)

  /CONTR(prog) = SPEC(1 1 1  -1 -1 2  -1  1 0)

  /WSD time(1) time(2)  /DESIGN prog(1) prog(2).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL          128.00      12     10.67

 PROG(1)                   46.94       1     46.94      4.40      .058

 PROG(2)                   32.03       1     32.03      3.00      .109

...
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Tests involving 'TIME(1)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           54.80      12      4.57

 TIME(1)                   10.68       1     10.68      2.34      .152

 PROG(1) BY TIME(1)        38.27       1     38.27      8.38      .013
 PROG(2) BY TIME(1)          .42       1       .42       .09      .768
...
Tests involving 'TIME(2)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           78.80      12      6.57

 TIME(2)                    1.63       1      1.63       .25      .627

 PROG(1) BY TIME(2)          .02       1       .02       .00      .961
 PROG(2) BY TIME(2)        22.05       1     22.05      3.36      .092

MANOVA also provides a detailed breakdown of main effects with the /PRINT =

SIGNIFICANCE(...) option. Both SINGLEDF for Between-S factors and UNIVARIATE for Within-S factors

are specified in the mixed factorial to partition both factors.

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3)  /PRINT = SIGNIF(SINGLEDF UNIV)

  /CONTR(time) = SPECIAL(1 1 1  -2  1 1   0 -1 1)

  /CONTR(prog) = SPECIAL(1 1 1  -1 -1 2  -1  1 0).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             128.00      12     10.67
 prog                      78.98       2     39.49      3.70      .056

   1ST Parameter           46.94       1     46.94      4.40      .058

   2ND Parameter           32.03       1     32.03      3.00      .109

...
Tests involving 'TIME' Within-Subject Effect.
 EFFECT .. prog BY TIME
...
 EFFECT .. TIME
 Univariate F-tests with (1,12) D. F.
 Variable  Hypoth. SS   Error SS  Hypoth. MS  Error MS        F   Sig. of F

 T2          10.67778   54.80000    10.67778   4.56667  2.33820        .152

 T3           1.63333   78.80000     1.63333   6.56667   .24873        .627

 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             133.60      24      5.57
 TIME                      12.31       2      6.16      1.11      .347
 prog BY TIME              60.76       4     15.19      2.73      .053
   1ST Parameter           38.29       2     19.14      3.44      .049
   2ND Parameter           22.47       2     11.23      2.02      .155

Special analyses for mixed designs can be more challenging with GLM than MANOVA. Below the

MMATRIX and LMATRIX options are used to partition the main effects. The results agree with the earlier

MANOVA results. Normalized coefficients can be used where necessary to produce correct SSs, as well as F

and p, although the final statistics do not depend on the value of the coefficients.

*Partition main effect of Prog (Between-S factor).

GLM pre g1 g5 BY prog /WSF = time 3

  /LMATRIX prog -1 -1 2

  /LMATRIX prog -1  1 0.

...
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Figure 9-2. Post hoc tests for the Between-

S factor

Tests of Between-Subjects Effects
 Source    Type III SS     df Mean Square F       Sig. 
 Intercept 5141.356        1  5141.356    482.002 .000 
 prog      78.978          2  39.489      3.702   .056 
 Error     128.000         12 10.667                   

Custom Hypothesis Tests #1
 L1       Contrast Estimate           7.506           
          Std. Error                  3.578           
          Sig.                        .058            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 46.944         1  46.944      4.401 .058 
 Error    128.000        12 10.667                 

Custom Hypothesis Tests #2
 L1       Contrast Estimate           -3.580          
          Std. Error                  2.066           
          Sig.                        .109            

 Source   Sum of Squares df Mean Square F     Sig. 
 Contrast 32.033         1  32.033      3.003 .109 
 Error    128.000        12 10.667                 

*Partition main effect of Time (Within-S factor) with normalized coefficients.

GLM pre g1 g5 BY prog /WSF = time(3)

  /MMATRIX pre -.8165 g1  .40825  g5 .40825;

           pre 0      g1 -.7071   g5 .7071.

...
Custom Hypothesis Tests
                                         T1              T2     
 L1          Contrast Estimate           .844            -.330  
             Std. Error                  .552            .662   
             Sig.                        .152            .627   
...
Univariate Test Results
 Source   Transformed     Sum of Squares df Mean Square F     Sig. 
          Variable                                                 
 Contrast T1              10.678         1  10.678      2.338 .152 
          T2              1.633          1  1.633       .249  .627 

 Error    T1              54.800         12 4.567
          T2              78.798         12 6.567

Post Hoc Tests

Post hoc comparisons for mixed designs combine the

Between-S and Within-S procedures. The POST HOC option can

be used for the Between-S factor and EMMEANS for the Within-

S factor. The Post Hoc menu in Figure 9-2 only lists the

Between-S factor prog. The menu generated the following

syntax, with default options removed. 

None of the differences among the three time means are

significant by the Bonferroni test, although time 1 versus time 3

would be by a liberal LSD test, p = .127/3 = .042.
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For the main effect of prog, groups 2 and 3 differ significantly by LSD (p = .020), SNK (different

subsets), and Tukey (p = .049), but not by Bonferroni (p = .060 = 3 × .020).

GLM  pre g1 g5 BY prog  /WSFACTOR = time 3 Polynomial

  /POSTHOC = prog(LSD SNK TUKEY BONFERRONI)

  /EMMEANS = TABLES(time) COMPARE ADJ(BONF).

...
Estimated Marginal Means
Pairwise Comparisons

 (I)  (J)  Mean Difference Std.  Sig.(a)

 time time (I-J)           Error        

 1    2    -1.267           .558   .127 

      3    -.800           1.020  1.000

 2    3     .467            .936  1.000

Post Hoc Tests

prog

            (I)    (J)    Mean Difference Std.      Sig.

            prog   prog   (I-J)           Error         

 LSD        1.0000 2.0000  2.066667       1.1925696 .109

                   3.0000 -1.133333       1.1925696 .361

            2.0000 3.0000 -3.200000(*)    1.1925696 .020

 Tukey HSD  1.0000 2.0000  2.066667       1.1925696 .233

                   3.0000 -1.133333       1.1925696 .620

            2.0000 3.0000 -3.200000(*)    1.1925696 .049

 Bonferroni 1.0000 2.0000  2.066667       1.1925696 .326

                   3.0000 -1.133333       1.1925696 1.000

            2.0000 3.0000 -3.200000       1.1925696 .060 

Homogeneous Subsets

                 prog   N Subset              

                          1         2         

 Student-Newman- 2.0000 5  8.933333            

 Keuls(a,b,c)    1.0000 5 11.000000 11.000000 

                 3.0000 5           12.133333 

                 Sig.     .109      .361      

 Tukey           2.0000 5  8.933333            

 HSD(a,b,c)      1.0000 5 11.000000 11.000000 

                 3.0000 5           12.133333 

                 Sig.     .233      .620      

Partitioning the Interaction

Follow-up analyses for the interaction include partitioning the interaction and simple effects. To

partition the interaction, pairs of coefficients for the main effect contrasts are multiplied to produce

interaction contrasts. In the present study, the main effects of Time and Program both involve two contrasts.

The following table reproduces the main effect contrasts from earlier and shows the products that partition

the interaction.
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Figure 9-3. Interaction

Deviations & Contrast

Coefficients

T1P1 T1P2 T1P3 T2P1 T2P2 T2P3 T3P1 T3P2 T3P3
11.4   9.0  9.6 10.0 10.2 13.6 11.6  7.6 13.2 L SS = njL

2/3cj
2

Time
 T1 -2 -2 -2  1  1  1 1 1  1
 T2  0  0  0 -1 -1 -1 1 1  1
Program
 P1 -1 -1  2 -1 -1  2 -1 -1  2
 P2 -1  1  0 -1  1  0 -1  1  0
T×P
 T1P1  2  2 -4 -1 -1  2 -1 -1  2 16.6 38.272
 T2P1  0  0  0  1  1 -2 -1 -1  2   .2   .0167
 T1P2  2 -2  0 -1  1  0 -1  1  0  1.0   .4167
 T2P2  0  0  0  1 -1  0 -1  1  0 -4.2 22.05

3 = SST×P

The following MANOVA is identical to one presented earlier and

now shows results of contrasts for both interaction and main effects. As

before, partitioning the Within-S factor time is specified on the /WSD

option, and partitioning the Between-S factor prog is specified on the

/DESIGN option. The results include partitioned interaction numerators, as

calculated above. The error for the interaction is partitioned because it

involves a Within-S factor, time.

Of primary interest in the present study is the first contrast for the

interaction, calculated manually by multiplying the first contrast for time

(Pre versus G1 & G5) by the first contrast for prog (P1 & P2 versus P3). Although the omnibus interaction

effect was not quite significant, p = .053, this focussed contrast is significant, p = .013, because the contrast

accounts for a substantial portion of SSP×T (38.27 units of 60.76 units in total), involves a single df, and its

error (4.57) is smaller than the error in the omnibus analysis (5.57). The contrast accounts for much of the

variability because the contrast coefficients correlate well with the cell means, clearly when main effects are

removed and groups 2 and 3 are combined. This relationship is shown in Figure 9-3. The interaction

deviations are plotted and the contrast coefficients written by the corresponding cells, r = .78 =

%(38.272/60.755). The correspondence can be seen more clearly by averaging means for programs 1 and 2.

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3)

  /CONTR(time) = SPEC(1 1 1  -2 1 1  0 -1 1)

  /CONTR(prog) = SPEC(1 1 1  -1 -1 2  -1 1 0)

  /WSD time(1) time(2)  /DESIGN prog(1) prog(2).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL          128.00      12     10.67
 PROG(1)                   46.94       1     46.94      4.40      .058
 PROG(2)                   32.03       1     32.03      3.00      .109
...
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Tests involving 'TIME(1)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           54.80      12      4.57
 TIME(1)                   10.68       1     10.68      2.34      .152

 PROG(1) BY TIME(1)        38.27       1     38.27      8.38      .013

 PROG(2) BY TIME(1)          .42       1       .42       .09      .768
...
Tests involving 'TIME(2)' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           78.80      12      6.57
 TIME(2)                    1.63       1      1.63       .25      .627
 PROG(1) BY TIME(2)          .02       1       .02       .00      .961
 PROG(2) BY TIME(2)        22.05       1     22.05      3.36      .092

MANOVA also provides a detailed breakdown of the interaction with /PRINT = SIGNIFICANCE, as

shown earlier.

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3) /PRINT = SIGNIF(SINGLEDF UNIV)

  /CONTR(time) = SPECIAL(1 1 1  -2  1 1   0 -1 1)

  /CONTR(prog) = SPECIAL(1 1 1  -1 -1 2  -1  1 0).

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             128.00      12     10.67
 prog                      78.98       2     39.49      3.70      .056
   1ST Parameter           46.94       1     46.94      4.40      .058
   2ND Parameter           32.03       1     32.03      3.00      .109
...
Tests involving 'TIME' Within-Subject Effect.
 EFFECT .. prog BY TIME
 EFFECT .. 1ST Parameter of prog BY TIME
 Univariate F-tests with (1,12) D. F.
 Variable   Hypoth. SS   Error SS    Hypoth. MS  Error MS          F  Sig. of F

 T2           38.27222   54.80000      38.27222   4.56667    8.38078       .013

 T3             .01667   78.80000        .01667   6.56667     .00254       .961

 EFFECT .. 2ND Parameter of prog BY TIME
 Univariate F-tests with (1,12) D. F.
 Variable  Hypoth. SS  Error SS  Hypoth. MS   Error MS         F   Sig. of F
 T2            .41667  54.80000      .41667    4.56667    .09124        .768
 T3          22.05000  78.80000    22.05000    6.56667   3.35787        .092

 EFFECT .. TIME
...
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS             133.60      24      5.57
 TIME                      12.31       2      6.16      1.11      .347
 prog BY TIME              60.76       4     15.19      2.73      .053
   1ST Parameter           38.29       2     19.14      3.44      .049
   2ND Parameter           22.47       2     11.23      2.02      .155

When partitioning the interaction in GLM with MMATRIX and LMATRIX options, GLM

automatically generates the interaction contrast(s). The first analysis below requests just the first contrast for

the interaction and uses normalized coefficients to obtain the correct SS, which corresponds to our

calculations and previous MANOVAs.

© James M. Clark 2024



Analysis of Variance 9.11

*Partition interaction in GLM, first contrast, normalized coefficients.

GLM pre g1 g5 BY prog /WSF = time(3)

  /MMATRIX pre  -.8165  g1 .40825  g5 .40825

  /LMATRIX prog -.40825   -.40825     .8165.

...
 L1       Contrast Estimate           2.767           
          Std. Error                  .956            
          Sig.                        .013            

 Source   Sum of Squares df Mean Square F     Sig. 

 Contrast 38.273         1  38.273      8.381 .013 

 Error    54.800         12 4.567

Simple Effects of the Within-S Factor

The second follow-up test for interactions is a simple effects analysis. Numerator calculations for the

mixed factorial are identical to other designs and shown below for the simple effect of the Within-S time

factor within levels of the Between-S Program factor.

y&&pt Time
Pre G1 G5 y&&p

Prog 1 11.4 10.0 11.6 11.0000
y&&pt-y&&p1 .400 -1.000   .600 SSTwP1=7.600   df = 2

2    9.0 10.2    7.6  8.9333
y&&pt-y&&p2   .0667 1.2667 -1.3333 SSTwP2=16.933   df = 2

3    9.6 13.6 13.2 12.1333
y&&pt-y&&p3 -2.5333  1.4667  1.0667 SSTwP3=48.533   df = 2

The simple effects analyses involve an alternative partitioning of SSTotal: 3SSTwP =

7.600+16.933+48.533 = 73.066 = SST+SSP×T. Each of the three simple effects with df = 2 can be partitioned

into df = 1 contrasts, as shown below for the reading preparation program. The contrast could also be done

with all 9 cell means in a row and 0s for all cells except the three shown.

Pre G1 G5
9.6 13.6 13.2 L SS

T1 vs 2&3 -2  1  1 7.6 48.133 SSL1wP3 = 5x7.6
2/6 = 48.133

T2 vs 3  0 -1  1 -.4  0.400
   3= 48.533 = SSTwP3

Carrying out this simple effects analysis in MANOVA requires a new option because Within-S

factors cannot occur on the /DESIGN option and Between-S factors cannot occur on the /WSD option. To

overcome this limitation, MANOVA has a keyword MWITHIN that requests mixed within (i.e., simple)

effects. MWITHIN can appear on the DESIGN or WSD options, depending on the desired simple effects

analysis. Below, the Within-S factor time is stated on the /WSD option and then MWITHIN appears on

/DESIGN before prog(1), prog(2), and prog(3). MANOVA analyzes the simple effect of the Within-S factor

at each level of the Between-S factor. The relevant sections of the output are printed in bold because
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MANOVA’s labelling is unclear. The relevant lines contain names for both a level of time and a level prog.

SSError = 133.60 from the overall simple effect of the Within-S factor time is partitioned into separate error

terms for follow-up analyses.

MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3)

  /CONTR(time) = SPEC(1 1 1  -2 1 1  0 -1 1)

  /CONTR(prog) = SPECIAL(1 1 1  -1 -1 2  -1 1 0)

  /WSD time             /DESIGN MWITHIN prog(1) MWITHIN prog(2) MWITHIN prog(3)

  /WSD time(1) time(2)  /DESIGN MWITHIN prog(1) MWITHIN prog(2) MWITHIN prog(3).

* * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   1 * * * * * * * *

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL          128.00      12     10.67
 MWITHIN PROG(1)         1815.00       1   1815.00    170.16      .000
 MWITHIN PROG(2)         1197.07       1   1197.07    112.23      .000
 MWITHIN PROG(3)         2208.27       1   2208.27    207.03      .000

Tests involving 'TIME' Within-Subject Effect.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL          133.60      24      5.57
 MWITHIN PROG(1) BY TIME    7.60       2      3.80       .68      .515
 MWITHIN PROG(2) BY TIME   16.93       2      8.47      1.52      .239

 MWITHIN PROG(3) BY TIME   48.53       2     24.27      4.36      .024 predicted

* * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   2 * * * * * * * *

Tests of Between-Subjects Effects.
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL          128.00      12     10.67
 MWITHIN PROG(1)         1815.00       1   1815.00    170.16      .000
 MWITHIN PROG(2)         1197.07       1   1197.07    112.23      .000
 MWITHIN PROG(3)         2208.27       1   2208.27    207.03      .000
...

Tests involving 'TIME(1)' Within-Subject Effect.
 Source of Variation                SS   DF        MS         F  Sig of F
 WITHIN+RESIDUAL                 54.80   12      4.57
 MWITHIN PROG(1) BY TIME(1)       1.20    1      1.20       .26      .618
 MWITHIN PROG(2) BY TIME(1)        .03    1       .03       .01      .933

 MWITHIN PROG(3) BY TIME(1)      48.13    1     48.13     10.54      .007 predicted

...
Tests involving 'TIME(2)' Within-Subject Effect.
 Source of Variation                SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL                 78.80      12      6.57
 MWITHIN PROG(1) BY TIME(2)       6.40       1      6.40       .97      .343
 MWITHIN PROG(2) BY TIME(2)      16.90       1     16.90      2.57      .135
 MWITHIN PROG(3) BY TIME(2)        .40       1       .40       .06      .809

The results are quite tidy. The overall effect of time is only significant for program 3, the reading-

intensive program, and does not approach significance for the other two groups. Also, the simple effect of

time for program 3 is entirely accounted for by the difference between pre-test reading scores and scores in

Grades 1 and 5, as predicted if the program effect does not fade. No other effects approach significance.

Chapters 7 and 8 showed that Within-S contrasts can be calculated by creating individual contrast

scores for each subject and then using the mean and standard deviation of the contrast scores to test H0:
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μContrast = 0. The complication for the mixed design is that the Within-S factor is nested within a Between-S

factor. The appropriate analysis in terms of contrast scores requires aggregating over the levels of the

Between-S factor, specifically the error terms. The following COMPUTE calculates normalized contrast

scores and the SPLIT file produces three MANOVAs, one for each level of prog.

COMPUTE t1 = (-2*pre+1*g1+1*g5)/SQRT(6). 

SPLIT FILE BY prog. 

MANOVA t1.

prog:      1.00
 Tests of Significance for t1 using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               7.13       4      1.78 (T×S)wP1

 CONSTANT                   1.20       1      1.20       .67      .458

prog:      2.00
 Tests of Significance for t1 using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS               8.80       4      2.20 (T×S)wP2

 CONSTANT                    .03       1       .03       .02      .908

prog:      3.00
 Tests of Significance for t1 using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              38.87       4      9.72 (TxS)wP3

 CONSTANT                  48.13       1     48.13      4.95      .090

SPLIT FILE OFF.

Note that the SSs in bold agree with the numerators in earlier simple effects analyses, but the

denominators do not. The three denominators must be summed to obtain the appropriate error term. One way

to do that is to request the simple effects of t1 within the levels of Program. Now the results agree with the

earlier analyses. SSError = 54.80 = 7.13+8.80+38.87, the separate errors from the previous analysis.

MANOVA t1 BY prog (1 3) 

   /DESIGN MWITHIN prog(1) MWITHIN prog(2) MWITHIN prog(3).

 Tests of Significance for t1 using UNIQUE sums of squares
 Source of Variation      SS  DF     MS         F  Sig of F

 WITHIN+RESIDUAL       54.80  12   4.57   (T×S)wP =7.13+8.80+38.87

 MWITHIN PROG(1)        1.20   1   1.20       .26      .618
 MWITHIN PROG(2)         .03   1    .03       .01      .933
 MWITHIN PROG(3)       48.13   1  48.13     10.54      .007

Using EMMEANS to request the simple effects of the Within-S factor Time in GLM performs

pairwise comparisons, but does not produce the overall simple effects tests; multivariate statistics are

reported for overall simple effects, as shown earlier for the Within-S factorial. By these tests, the simple

effect of time is significant for program 3 but not for programs 1 and 2, agreeing with the MANOVA results.

The pairwise comparisons do lead to a meaningful pattern: none of the differences are significant for

programs 1 and 2, whereas time 1 differs from each of times 2 and 3 (marginally by non-directional tests) for
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program 3. This pattern makes sense theoretically.

GLM pre g1 g5 BY prog /WSF = time 3 SPECIAL(1 1 1  -2 1 1  0 -1 1)

  /CONTRAST(prog) = SPEC(-1 -1 2  -1 1 0)

  /EMMEANS = TABLE(prog BY time) COMPARE (time).

...
Estimated Marginal Means
Pairwise Comparisons
 prog   (I)  (J)  Mean Difference Std.  Sig.(a) 
        time time (I-J)           Error        

 1.0000 1    2    1.400           .966  .173
             3    -.200           1.766 .912
        2    3    -1.600          1.621 .343

 2.0000 1    2    -1.200          .966  .238
             3    1.400           1.766 .443
        2    3    2.600           1.621 .135

 3.0000 1    2    -4.000(*)       .966  .001
             3    -3.600          1.766 .064
        2    3    .400            1.621 .809
Multivariate Tests
 prog                   Value F        Hypothesis df Error df Sig. 
 1.0000 Pillai's trace  .185  1.250(a) 2.000         11.000   .324 
...
 2.0000 Pillai's trace  .232  1.663(a) 2.000         11.000   .234 
...
 3.0000 Pillai's trace  .590  7.910(a) 2.000         11.000   .007 

...

Simple Effects of the Between-S Factor

The previous analyses tested the simple effects of the Within-S factor time within levels of the

Between-S factor prog. The following analyses test the simple effects of the Between-S factor prog within

levels of the Within-S factor time. Numerators for overall and partitioned simple effects are calculated as

usual.

      Program
1 2 3 y&&t2

y&&pt2 10.00 10.20 13.60 11.267
y&&pt2-y&&t2 -1.267 -1.067  2.33

SSPwT2 = 5×(-1.267
2 + -1.0672 + 2.332) = 40.926

L SS
P1 = P12v3 -1 -1 2 7.0 40.833 = SSP1wT2

P2 = P1v2 -1  1 0 0.2  0.10 = SSP2wT2

Sum = 40.933 = SSPwT2

Corresponding SPSS analyses follow. Note the differences between the analysis here and the earlier

simple effects with respect to error terms. Specifically, error terms from the overall simple effects are not

partitioned for follow-up analyses when the Between-S factor prog is partitioned.
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MANOVA pre g1 g5 BY prog(1 3) /WSF = time(3)

  /CONTR(time) = SPECIAL(1 1 1  -2  1 1   0 -1 1)

  /CONTR(prog) = SPECIAL(1 1 1  -1 -1 2  -1  1 0)

  /WSD MWITHIN time(1) MWITHIN time(2) MWITHIN time(3) /DESIGN prog

  /WSD MWITHIN time(1) MWITHIN time(2) MWITHIN time(3) /DESIGN prog(1) prog(2).

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * *

Tests involving 'MWITHIN TIME(1)' Within-Subject Effect.
 Source of Variation              SS   DF        MS         F  Sig of F
 WITHIN+RESIDUAL               88.40   12      7.37
 MWITHIN TIME(1)             1500.00    1   1500.00    203.62      .000

 PROG BY MWITHIN TIME (1)      15.60    2      7.80      1.06      .377   no effect

...
Tests involving 'MWITHIN TIME(2)' Within-Subject Effect.
 Source of Variation              SS   DF        MS         F  Sig of F
 WITHIN+RESIDUAL               82.00   12      6.83
 MWITHIN TIME(2)             1904.07    1   1904.07    278.64      .000

 PROG BY MWITHIN TIME (2)      40.93    2     20.47      3.00      .088   predicted

...
Tests involving 'MWITHIN TIME(3)' Within-Subject Effect.
 Source of Variation              SS   DF        MS         F  Sig of F
 WITHIN+RESIDUAL               91.20   12      7.60
 MWITHIN TIME(3)             1749.60    1   1749.60    230.21      .000

 PROG BY MWITHIN TIME (3)      83.20    2     41.60      5.47      .020   predicted

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   2 * * * * * *

Tests involving 'MWITHIN TIME(1)' Within-Subject Effect.
 Source of Variation               SS   DF        MS         F  Sig of F

 WITHIN+RESIDUAL                88.40   12      7.37  same error

 MWITHIN TIME(1)              1500.00    1   1500.00    203.62      .000

 PROG(1) BY MWITHIN TIME (1)     1.20    1      1.20       .16      .694 no effect

 PROG(2) BY MWITHIN TIME (2)    14.40    1     14.40      1.95      .187

Tests involving 'MWITHIN TIME(2)' Within-Subject Effect.
 Source of Variation               SS   DF        MS         F  Sig of F

 WITHIN+RESIDUAL                82.00   12      6.83  same error

 MWITHIN TIME(2)              1904.07    1   1904.07    278.64      .000

 PROG(1) BY MWITHIN TIME (2)    40.83    1     40.83      5.98      .031 predicted

 PROG(2) BY MWITHIN TIME (2)      .10    1       .10       .01      .906

Tests involving 'MWITHIN TIME(3)' Within-Subject Effect.
 Source of Variation               SS   DF        MS         F  Sig of F

 WITHIN+RESIDUAL                91.20   12      7.60  same error

 MWITHIN TIME(3)              1749.60    1   1749.60    230.21      .000

 PROG(1) BY MWITHIN TIME (3)    43.20    1     43.20      5.68      .035 predicted

 PROG(2) BY MWITHIN TIME (3)    40.00    1     40.00      5.26      .041

These analyses are actually equivalent to separate single factor Between-S analyses of variance, one

for each level of the time factor, as shown below for the time 3 measure g5.

*Prog within Time(3).

MANOVA g5 BY prog(1 3)

  /CONTR(prog) = SPECIAL(1 1 1  -1 -1 2  -1 1 0)  /DESIGN  /DESIGN prog(1) prog(2).

* * * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   1 * * * * * * *
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN CELLS              91.20      12      7.60
 prog                      83.20       2     41.60      5.47      .020
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* * * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   2 * * * * * * *
 Source of Variation          SS      DF        MS         F  Sig of F
 WITHIN+RESIDUAL           91.20      12      7.60
 PROG(1)                   43.20       1     43.20      5.68      .035
 PROG(2)                   40.00       1     40.00      5.26      .041

Overall, this simple effects analysis is readily interpreted in terms of the hypotheses. The program

effect is marginally significant at time 2, but the difference between program 3 and programs 1 and 2 is

significant, as predicted. At time 3, the overall effect of prog is significant, as is the difference between

program 3 and programs 1 and 2. A small complication at time 3 is that the difference between programs 1

and 2 is significant; the social control group performs more poorly than the no-treatment control group.

Since the GLM /EMMEANS option allows for both Within-S and Between-S factors, it appears

straightforward to obtain the overall simple effects, and indeed this is true for the simple effect of the

Between-S factor prog as shown below. This analysis could also be done using separate analyses for each

level of the Within-S factor time, as just illustrated for MANOVA. Rather than partitioning the simple effect

as predicted, however, EMMEANS produces pairwise comparisons, which can lead to awkward results. In

the first analysis, for example, program 3 differs from programs 1 and 2 at time 2, a meaningful pattern, but

programs 1 and 2 differ significantly at time 3, as do programs 2 and 3, but programs 1 and 3 do not. This

pattern is not easy to explain theoretically.

GLM pre g1 g5 BY prog /WSF = time 3 SPECIAL(1 1 1  -2 1 1  0 -1 1)

  /CONTRAST(prog) = SPEC(-1 -1 2  -1 1 0)

  /EMMEANS = TABLE (prog BY time) COMPARE (prog).

...
Estimated Marginal Means
Pairwise Comparisons
 time (I)    (J)    Mean Difference Std.  Sig.(a)
      prog   prog   (I-J)           Error     
 1    1.0000 2.0000 2.400           1.717 .187
             3.0000 1.800           1.717 .315
      2.0000 3.0000 -.600           1.717 .733

 2    1.0000 2.0000 -.200           1.653 .906
             3.0000 -3.600          1.653 .050
      2.0000 3.0000 -3.400          1.653 .062

 3    1.0000 2.0000 4.000(*)        1.744 .041
             3.0000 -1.600          1.744 .377
      2.0000 3.0000 -5.600(*)       1.744 .007

Univariate Tests
 time          Sum of Squares df Mean Square F     Sig. 
 1    Contrast 15.600         2  7.800       1.059 .377 
      Error    88.400         12 7.367                  

 2    Contrast 40.933         2  20.467      2.995 .088 
      Error    82.000         12 6.833                  

 3    Contrast 83.200         2  41.600      5.474 .020 
      Error    91.200         12 7.600                  
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Given the limitations of GLM, MANOVA is often preferred to carry out simple effects analyses for

mixed factorials.

Conclusions

We have now largely completed work on analysis of variance, having covered single factor and

factorial designs involving Within-S, Between-S, or a mix of Between-S and Within-S factors. One of the

admirable features of sophisticated programs like MANOVA and GLM is that they automatically determine

the appropriate error terms for different designs. As a result, the principles behind error terms for Between-S

and Within-S designs, generalize to studies involving multiple factors with various combinations of Within-S

and Between-S factors. Appendix 9-2 illustrates with a three factor ANOVA involving one Between-S factor

and two Within-S factors.

© James M. Clark 2024



Analysis of Variance 9.18

Appendix 9-1: Mixed Analysis in Between-S Format

Entering the data in Between-S format (i.e., one observation per row with a Subject factor added)

demonstrates the various error terms used in preceding analyses and allows a comparison between the

Within-S and Between-S analyses, specifically the possible benefits of a smaller error term with the latter.

*Between-S format.

DATA LIST FREE / prog subj time score.

BEGIN DATA
1 1 1 11  1 1 2  9  1 1 3  9  1 2 1 11  1 2 2 14  1 2 3 12  

1 3 1  8  1 3 2  5  1 3 3 10 1 4 1 15  1 4 2 13  1 4 3 13  1 5 1 12  1 5 2  9  1 5 3 14

2 1 1 11  2 1 2 13  2 1 3  7  2 2 1 12  2 2 2 12  2 2 3  9 

2 3 1  5  2 3 2  7  2 3 3  9 2 4 1  8  2 4 2  8  2 4 3  8  2 5 1  9  2 5 2 11  2 5 3  5

3 1 1 14  3 1 2 14  3 1 3 14 3 2 1  7  3 2 2 14  3 2 3 19  

3 3 1 10  3 3 2 14  3 3 3  8 3 4 1  7  3 4 2 12  3 4 3 13  3 5 1 10  3 5 2 14  3 5 3 12

END DATA.

The following analysis shows the sources of variability for the mixed design: the main effect of prog,

the main effect of time, the prog by time interaction, the subj within prog error term for the Between-S effect

of prog, and the time by subj within prog error term for the main and interaction effects involving the Within-

S effect of time. The values here correspond to those in the initial default ANOVA.

MANOVA score BY prog(1 3) time(1 3) subj(1 5)

  /DESIGN prog   time   prog BY time   subj WITHIN prog   time BY subj WITHIN prog.

 Source of Variation           SS      DF        MS         F  Sig of F
 RESIDUAL                     .00       0       .
 PROG                       78.98       2     39.49       .        .
 TIME                       12.31       2      6.16       .        .
 PROG BY TIME               60.76       4     15.19       .        .
 SUBJ WITHIN PROG          128.00      12     10.67       .        .
 TIME BY SUBJ WITHIN PROG  133.60      24      5.57       .        .

Given the Between-S format, we can also determine the results for a Between-S factorial ignoring the

fact that time is a Within-S factor. The analysis below treats both time and prog as Between-S factors. The

prog by time interaction is more significant in the Within-S design (p = .053) despite numerators being the

same because MSError for the Within-S design is smaller (5.567) than for the Between-S design (7.27). An

advantage of Within-S designs is smaller error terms and increased sensitivity to effects.

*Default Between-S factorial.

MANOVA score BY prog(1 3) time(1 3).

 Source of Variation          SS  DF        MS         F  Sig of F
 WITHIN CELLS             261.60  36      7.27
 prog                      78.98   2     39.49      5.43      .009
 time                      12.31   2      6.16       .85      .437

 prog BY time              60.76   4     15.19      2.09      .102   Not significant

 (Total)                  413.64  44      9.40

Given data in Between-S format, MANOVA allows users to identify denominators and associate them

with the appropriate numerators, as shown below. The numbers 1 and 2 identify the denominators. SwP is the
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appropriate error for the Between-S effect of program, and T×SwP is the appropriate error term for factors

that include the Within-S time factor, namely the main effect of Time and the Time by Program interaction.

MANOVA score BY prog(1 3) time(1 3) subj (1 5) 

  /DESIGN prog vs 1 time vs 2 prog BY time vs 2 

  subj w prog  = 1  time BY subj W prog = 2.

 
 Source of Variation          SS      DF        MS         F  Sig of F
 Error 1                  128.00      12     10.67
 PROG                      78.98       2     39.49      3.70      .056

 Error 2                  133.60      24      5.57
 TIME                      12.31       2      6.16      1.11      .347
 PROG BY TIME              60.76       4     15.19      2.73      .053
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Appendix 9-2: Generalization to Higher Order Designs

Researchers often use ANOVA to examine the influence of three or more factors. The SPSS

commands, output, and interpretation are generalizations of the elements discussed here. To illustrate,

consider a three-factor design with 2 levels of A, 3 levels of B, 4 levels of C, and 5 levels of S (subjects).

Factor A is Between-S and factors B and C are Within-S factors. Here is a hypothetical dataset. Each of 5

subjects in the two levels of A has 3×4 = 12 scores.

a s b1c1 b1c2 b1c3 b1c4 b2c1 b2c2 b2c3 b2c4 b3c1 b3c2 b3c3 b3c4

1 1   95  102   87   95  104   98  103  105   74   96  102  101

1 2  109   84   98  103  104  114   88  106  102  100  115   99

1 3   95   85  103   69  104  105  106   92   98   88   87   82

1 4   92   95  101  107  110   95   88  108  110   85  107   99

1 5   97  103  114   86  114  112  120  106   95  110  124   81

2 1  106   88   92  100  101   97   87   94  112  101  122   96

2 2   89   92  110  115  101   93  107   96   87  104   90  106

2 3  102  112   99  110  105   93  107  108  100  100   97  114

2 4   96  105   95   97  113   97  116  100   94   99  121  105

2 5  109  112  109  105  102  111   95  101  106  118  110  104

The SPSS command to analyze the data uses BY for the Between-S factor A and /WSF for the

Within-S factors B and C. Note that b(3) occurs first and c(4) second because of the order that the 12

variables are listed on GLM. Given variables were listed on GLM in the order: b1c1 b2c1 b3c1 ...b1c4 b2c4

b3c4, /WSF = c(4) b(3) would be correct.  

GLM b1c1 b1c2 b1c3 b1c4 b2c1 b2c2 b2c3 b2c4 b3c1 b3c2 b3c3 b3c4 BY a /WSF = b(3) c(4).

Tests of Within-Subjects Effects

Source

Type III Sum of

Squares df Mean Square F Sig.
b 256.317 2 128.158 1.961 .173
b * a 571.217 2 285.608 4.371 .031
Error(b) 1045.467 16 65.342

c 259.567 3 86.522 .666 .581
c * a 201.200 3 67.067 .516 .675
Error(c) 3118.067 24 129.919

b * c 506.283 6 84.381 1.175 .335
b * c * a 326.450 6 54.408 .758 .607
Error(b*c) 3446.933 48 71.811

Tests of Between-Subjects Effects
Source Type III Sum of Squares df Mean Square F Sig.
Intercept 1222100.833 1 1222100.833 6301.384 .000
a 320.133 1 320.133 1.651 .235
Error 1551.533 8 193.942

The partitioning of SSTotal into 11 components is illustrated by the solid lines in the following tree

diagram. To summarize,

SSTotal = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSSwA + SSB×SwA + SSC×SwA + SSB×C×SwA

There are seven effects of interest, each giving a unique SSNumerator: A, B, C, AB, AC, BC, and ABC.
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SS Total

df=(N-1)=A×B×C×S-1

SS A

df=(A-1)

SS B

df=(B-1)

SS C

df=(C-1)
SS AB

df=(A-1)(B-1) SS AC

df=(A-1)(C-1)

SS BC

df=(B-1)(C-1)

SS ABC  

df=(A-1)(B-1)(C-1)

BS: A

WS: B C

SS C×SwA

df=A×(C-1)(S-1)
SS B×C×SwA

df=A×(B-1)(C-1)(S-1)

SS B×SwA

df=A×(B-1)(S-1)

SS SwA

df=A×(S-1)

In a completely Between-S design there would be a single error term (denominator) based on the variability

among scores in each of the eight conditions (cells): SSSwABC. In a completely Within-S design, there would

be variability due to subjects (SSS) and seven unique error terms, one for each effect defined in terms of

interactions with subjects (e.g., SSA×S, SSA×B×S). In the mixed design here with one Between-S factor and two

Within-S factors, there are four error terms. The error term for the Between-S factor is SSSwA, the variability

in subjects within levels of A. The error term for Within-S factors and interactions involve interactions with

subjects, but now nested within levels of A (e.g., SSB×SwA). Dashed lines show which denominator goes with

which of the main effects, two-way interactions, and three-way interaction. Given the tree and the output

above, calculate df for each of the components.
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