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Abstract. We prove that the quantized Carter-Lusztig basis for a finite di-
mensional irreducible Uq(gln(C))-module V (λ) is related to the global crystal
basis for V (λ) by an upper triangular invertible matrix. We express the global
crystal basis in terms of the q-Schur algebra and provide an algorithm for ob-
taining global crystal basis vectors for V (λ) using the q-Schur algebra.

1. Introduction

Various bases for finite dimensional irreducible polynomial representations of
the quantized universal enveloping algebra Uq(gln(C)) have been given. Each
such Uq(gln)-module is of the form V (λ), where λ is a partition of a positive
integer into at most n parts, and the dimension of V (λ) is given by the number
of semistandard λ-tableaux with entries in the set {1, 2, . . . , n}. Several authors
have studied transition matrices between various bases (see, for instance, [2], [4],
[13]).

The canonical bases or global crystal bases of V (λ) due to Lusztig [14] and
Kashiwara [12] have nice properties but can be difficult to compute explicitly.
Algorithms to compute global crystal basis vectors are given by de Graaf in [4] and
Leclerc-Toffin in [13]. By embedding V (λ) into a tensor product of fundamental
modules, Leclerc and Toffin give an intermediate monomial basis for V (λ) which is
shown to be related to the global crystal basis of V (λ) by a unitriangular matrix.
They then obtain the global crystal basis vectors through a triangular algorithm.

Polynomial representations of Uq(gln) can also be studied by means of the q-
Schur algebra, Sq(n, r). This is a quantized version of the classical Schur algebra
S(n, r) which was defined by J. A. Green [7] as the dual of the coalgebra A(n, r)
of homogeneous polynomials of degree r in n2 variables xij, 1 ≤ i, j ≤ n. There
are several different approaches to studying q-Schur algebras in the literature (see
[1],[5],[6], [17]). We follow the approach taken by J. A. Green, but in the quantum
setting (see [17]), where Aq(n) is the coordinate ring of quantum matrices, due
to Manin [15], Aq(n, r) is the rth homogeneous part of Aq(n), and Sq(n, r) is the
dual Aq(n, r)

∗.
A quantized version of the Carter-Lusztig basis for V (λ), given in terms of

elements in Uq(gln)+, is given in [18]. In [3], we give the Carter-Lusztig basis in
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terms of q-Schur algebra elements. The primary aims of the current work are to
describe the global crystal basis in terms of elements in the q-Schur algebra, to
give an algorithm that explicitly provides elements of the global crystal basis using
q-Schur algebra elements, and to prove that the Carter-Lusztig basis and global
crystal basis are related by an invertible, upper triangular matrix.

After recalling the necessary background material, we discuss Leclerc-Toffin’s
intermediate basis in Section 4. We then develop various results regarding q-
Schur algebras that allow us to explicitly prove at the end of Section 6 that the
transition matrix between the quantized Carter-Lusztig basis and the Leclerc-
Toffin intermediate basis is upper triangular and invertible, from which it follows
that the Carter-Lusztig basis and global crystal basis are related by an invertible,
upper triangular, matrix. We give a method for determining the entries of the first
matrix in Section 7. This, combined with the algorithm for writing global basis
vectors in terms of the intermediate basis elements allow us to give an algorithm
for finding global basis vectors in terms of q-Schur algebra elements.

2. Young tableaux

Let n and r be fixed positive integers and let λ = (λ1, λ2, . . . , λk), where λ1 ≥
λ2 ≥ . . . ≥ λk > 0 and

∑k
i=1 λi = r, be a partition of r, denoted λ a r. Define

Λ+(n, r) = {λ = (λ1, λ2, . . . , λk) a r | k ≤ n} and

I(n, r) = {I = (i1, i2, . . . , ir) | iρ ∈ {1, . . . n}, 1 ≤ ρ ≤ r}.
All partitions λ shall belong to Λ+(n, r). The Young diagram of shape λ consists
of k left-justified rows where the i-th row contains λi boxes and a λ-tableau is a
filling of the Young diagram of shape λ with entries from {1, 2, . . . , n}.

A λ-tableau is semistandard if it is both column increasing and weakly row
increasing. Denote the set of λ-tableau by T (λ, n) and let

CT (λ, n) = {T ∈ T (λ, n) | T is column increasing},

RT (λ, n) = {T ∈ T (λ, n) | T is weakly row increasing},
SST (λ, n) = {T ∈ T (λ, n) | T is semistandard}.

The column sequence IC(T ) of T comes from reading the entries down columns
from left to right and the row sequence IR(T ) from reading the entries across the
rows of T from top to bottom. If I = IR(T ) is the row sequence of T , we will
often write I t to denote the corresponding column sequence IC(T ) of T .

We will often work with the column and row sequences of the tableau T (λ),
which is obtained by filling the i-th row of the Young diagram of shape λ entirely
with i’s. Denote IR(T (λ)) = I(λ) and IC(T (λ)) = IC(λ).

The symmetric group acts on I(n, r) by Iσ = (i1, . . . , ir)σ = (iσ(1), . . . , iσ(r)),
for σ ∈ Sr, which yields an action on λ-tableaux by defining Tσ = S where
IC(S) = IC(T )σ. Let T λ be the λ-tableau with row sequence IR(T λ) = (1, 2, . . . , r)
and define C(λ) to be the subgroup of permutations in Sr that leave the columns
of T λ invariant and R(λ) the subgroup that leaves the rows of T λ invariant. Two
λ-tableaux T and S are row equivalent if T = Sσ for some σ ∈ R(λ); we denote
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this by T ∼R S. Similarly, T is column equivalent to S, written T ∼C S, if T = Sσ
where σ ∈ C(λ).

Example 2.1. If λ = (3, 2, 1) then I(λ) = (1, 1, 1, 2, 2, 3) and IC(λ) = (1, 2, 3, 1, 2, 1).

For the semistandard λ-tableau T =
1 2 2
3 4
5

, we have IR(T ) = (1, 2, 2, 3, 4, 5),

IC(T ) = (1, 3, 5, 2, 4, 2) and
1 2 2
3 4
5

∼R
2 2 1
4 3
5

.

3. Quantized enveloping algebras and q-Schur algebras

Let q be an indeterminate. The quantized enveloping algebra of the complex Lie
algebra gln, denoted Uq(gln), is the associative algebra over C(q) with generators
Ei, Fi, 1 ≤ i < n, Ki, K

−1
i , 1 ≤ i ≤ n and relations as follows:

KiK
−1
i = K−1i Ki = 1 KiKj = KjKi

KiEj = qδi,j−δi,j+1EjKi KiFj = qδi,j+1−δi,jFjKi

EiEj = EjEi if |i− j| > 1 FiFj = FjFi if |i− j| > 1

EiFj − FjEi = δij
Ki,i+1 −K−1i,i+1

q − q−1
E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 if |i− j| = 1

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0 if |i− j| = 1,

where Ki,i+1 = KiK
−1
i+1. The subalgebra of Uq(gln) generated by all Ei, 1 ≤ i < n

is denoted Uq(gln)+ and the subalgebra generated by all Fi is denoted by Uq(gln)−.

The natural module is the C(q)-vector space V with basis {v1, . . . , vn} and
Uq(gln)-action given by Eivk = δi+1,kvi, Fivk = δi,kvi+1, Kivk = qδi,kvk. This ac-
tion can be extended to V ⊗r via the comultiplication ∆ on Uq(gln) defined by

(1) ∆(Ei) = Ei⊗1+K−1i,i+1⊗Ei, ∆(Fi) = Fi⊗Ki,i+1+1⊗Fi, ∆(Kj) = Kj⊗Kj,

1 ≤ i < n, 1 ≤ j ≤ n.

Let τ : Uq(gln)→ Uq(gln) be the antiautomorphism given by

τ(Ei) = Fi, τ(Fi) = Ei, τ(Kj) = Kj, 1 ≤ i < n, 1 ≤ j ≤ n.

Another comultiplication ∆1 : Uq(gln) → Uq(gln) ⊗ Uq(gln) is given by ∆1 =
τ ⊗ τ ◦∆ ◦ τ. We then have the following:

(2) ∆1(Ei) = 1⊗Ei+Ei⊗Ki,i+1,∆1(Fi) = K−1i,i+1⊗Fi+Fi⊗1,∆1(Kj) = Kj⊗Kj,

where 1 ≤ i < n, 1 ≤ j ≤ n.

Remark 1. We will need to make minor adjustments to some of the required
results from [3] and [11] since the comultiplication ∆1 was used in those articles.
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For a Uq(gln)-module V and χ = (χ1, . . . , χn) an n-tuple of non-negative in-
tegers, the weight space associated to χ is the subspace V χ = {v ∈ V | Kiv =
qχiv, 1 ≤ i ≤ n}. If v ∈ V χ, v 6= 0, then v is said to be a weight vector of weight
χ, and v is a highest-weight vector if Eiv = 0 for 1 ≤ i < n.

Let Aq(n) be the associative C(q)-algebra generated by the variables xij, 1 ≤
i, j ≤ n, subject to the relations (see [15], [19], for instance):

(3)

xilxik = qxikxil 1 ≤ k < l ≤ n
xjkxik = qxikxjk 1 ≤ i < j ≤ n
xilxjk = xjkxil 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n
xikxjl − xjlxik = (q−1 − q)xilxjk 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

Given I = (i1, . . . , ir), J = (j1, . . . , jr) ∈ I(n, r), let xI,J = xi1j1 · · ·xirjr ∈ Aq(n)
and let Aq(n, r) denote the C(q)-subspace of Aq(n) generated by the monomi-
als xI,J , where I, J ∈ I(n, r). The algebra Aq(n) is a coalgebra, with comulti-
plication given by ∆(xij) =

∑n
k=1 xik ⊗ xkj, and Aq(n, r) is a subcoalgebra of

Aq(n). The dual Aq(n, r)
∗ = Sq(n, r), is then an associative C(q)-algebra called

the q-Schur algebra with multiplication ξη(xI,J) =
∑

A∈I(n,r) ξ(xI,A)η(xA,J), where

ξ, η ∈ Sq(n, r), xI,J ∈ Aq(n, r).
Let I(n, r)2 = I(n, r)× I(n, r) and define

J (n, r) = {(I, J) ∈ I(n, r)2 | j1 ≤ j2 ≤ · · · ≤ jr and ik ≤ ik+1 when jk = jk+1}.

Then {xI,J | (I, J) ∈ J (n, r)} is a basis for Aq(n, r) (see [5]). We will often shorten
the notation for J (n, r) to J .

The dual basis {ξI,J | (I, J) ∈ J (n, r)} for Sq(n, r) satisfies ξI,J(xP,Q) = 1 if
xP,Q = xI,J and ξI,J(xP,Q) = 0 otherwise, where (P,Q), (I, J) ∈ J (n, r). For
arbitrary (I, J) ∈ I(n, r)2, we define

ξI,J =
∑

(A,B)∈J

cA,BξA,B where xI,J =
∑

(A,B)∈J

cA,BxA,B.

The symmetric group acts on I(n, r)× I(n, r) by (I, J)σ = (Iσ, Jσ). Let < be
the lexicographic order on I(n, r) and order I(n, r)× I(n, r) by defining (A,B) <
(I, J) if B < J or B = J and A < I. Let (I, J)0 be the minimal element in the
Sr-orbit containing (I, J).

For I = (i1, i2, . . . , ir), J = (j1, j2, . . . , jr) ∈ I(n, r), let S1 = {(a, b) | a <
b, ia = ib and ja > jb}, S2 = {(a, b) | a < b, ja = jb and ia > ib}, and define
ε(I, J) = |S1|+ |S2|. The following two lemmas, the first of which is an adjustment
of [16, Lemma 6.1.2], will be useful throughout the article.

Lemma 3.1. Let I, J ∈ I(n, r). Then xI,J = qε(I,J)x(I,J)0 +
∑

(S,T )∈J
(S,T )>(I,J)0

aS,TxS,T ,

where aS,T ∈ Z[q, q−1].

Define R(λ, n) = {Q ∈ I(n, r) | Q = IR(T ) for some T ∈ RT (λ, n)} = {Q ∈
I(n, r) | (Q, I(λ)) ∈ J }.
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Lemma 3.2. Let η ∈ Sq(n, r) and λ ∈ Λ+(n, r). Then ηξI(λ),I(λ) =
∑

Q∈R(λ,n)

aQξQ,I(λ),

where aQ ∈ C(q).

Proof. Write ηξI(λ),I(λ) =
∑

(Q,P )∈J

aQ,P ξQ,P as a C(q)-linear combination of ba-

sis elements. Then aQ,P = ηξI(λ),I(λ)(xQ,P ) =
∑

A∈I(n,r)

η(xQ,A)ξI(λ),I(λ)(xA,P ). But

ξI(λ),I(λ)(xA,P ) = 0 unless P ∼ I(λ) and since (Q,P ) ∈ J , we must have P = I(λ).

Thus ηξI(λ),I(λ) =
∑

(Q,I(λ))∈J

aQξQ,I(λ), and (Q, I(λ)) ∈ J if and only if the tableau

with row sequence Q is weakly row increasing. �

4. Leclerc-Toffin bases and global crystal bases

We review the relevant results on Uq(gln)-modules and global bases, for the most
part following [13]. We have a Uq(gln)-module action on Aq(n) given by

(4) Eixkl = δi+1,lxki, Fixkl = δilxk,i+1, Kixkl = qδilxkl, K−1i xkl = q−δilxkl

and, using (1), we have

Ei(PQ) = (EiP )Q+ (K−1i,i+1P )(EiQ), Fi(PQ) = (FiP )(Ki,i+1Q) + P (FiQ),

Ki(PQ) = (KiP )(KiQ), P,Q ∈ Aq(n).

Given I = (i1, i2, . . . , ir), J = (j1, j2, . . . , jr) ∈ I(n, r) with i1 < i2 < · · · < ir,
define the q-determinant in Aq(n, r) by

detqX
I
J =


∑

σ∈Sr(−q)
−`(σ)xi1jσ(1)xi2jσ(2) · · ·xirjσ(r) if j1 < j2 < · · · < jr∑

σ∈Sr(−q)
−`(σ)xiσ(1)j1xiσ(2)j2 · · ·xiσ(r)jr otherwise.

For k ≤ n, let Λk = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) and let T be a Λk-tableau with column

sequence IC(T ) = (a1, a2, . . . , ak) where ai ∈ {1, . . . , n} for 1 ≤ i ≤ k. Associate
to T an element ω(T ) ∈ Aq(n, r), called a (one-column) bideterminant by

ω(T ) = detqX
1,2,...,k
a1,a2,...,ak

.

The following lemma follows from the relations (3).

Lemma 4.1. Let T be a one-column Λk-tableau. Then

(1) ω(T ) = 0 if T contains repeated entries and
(2) if T is column increasing and T = Sσ then ω(T ) = (−q)`(σ)ω(S).

The C(q)-vector space generated by one-column bideterminants ω(T ) given by
Λk-tableaux is a Uq(gln)-module, called a fundamental module, with action given
by (4); we denote this Uq(gln)-module by V (Λk). We have the following lemma,
which follows readily by use of the relations (3).

Lemma 4.2. Let T be a one-column Λk-tableau with ω(T ) 6= 0.
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(1) If T contains an i + 1, then Eiω(T ) = ω(S) where S is the same as T
except that the i+ 1 has been replaced with an i. If T does not contain an
i+ 1, then Eiω(T ) = 0.

(2) If T contains an i, then Fiω(T ) = ω(S) where S is the same as T except
that the i has been replaced by an i + 1. If T does not contain an i, then
Fiω(T ) = 0.

(3) If T contains an i, then Kiω(T ) = qω(T ) and Kiω(T ) = ω(T ) otherwise.

Let λ =
∑n

i=1 aiΛi ∈ Λ+(n, r) and let

W (λ) = V (Λn)⊗an ⊗ V (Λn−1)
⊗an−1 ⊗ · · · ⊗ V (Λ1)

⊗a1 .

A basis for W (λ) is given by

BW (λ) = {ω(T ) | T ∈ CT(λ, n)}.
Define wλ ∈ W (λ) to be the tensor product of the highest-weight vectors of each
V (Λk). Then wλ has weight λ and is the unique highest-weight vector (up to
scalars) in W (λ). The Uq(gln)-module V (λ) = Uq(gln)wλ is irreducible and every
finite dimensional irreducible polynomial Uq(gln)-module is isomorphic to some
V (λ) where λ ∈ Λ+(n, r). A basis for V (λ) is indexed by the elements T ∈
SST (λ, n) (see, for instance, [9]).

The canonical basis or (lower) global basis for Uq(g)−, where g is a complex
simple Lie algebra, was first introduced by Lusztig in [14]. Another proof of the
existence of canonical bases was later given by Kashiwara in [12]. The canonical
bases induce bases for V (λ). For a general introduction to crystal bases, see [8]
or [10]. Following [13], we recall the definition of the global crystal basis of a
Uq(gln)-module V (λ).

Let A be the subring of C(q) of rational functions without pole at q = 0. Let
LW (λ) denote the A-lattice in W (λ) spanned by the basis elements in BW (λ),
which is the crystal lattice of W (λ). Let LV (λ) = LW (λ) ∩ V (λ), which is the
crystal lattice of V (λ).

Define a C(q)-algebra homomorphism on Uq(gln) that is an involution by

(5) Ei = Ei, Fi = Fi, q = q−1, Kj = K−1j , 1 ≤ i < n, 1 ≤ j ≤ n,

and define w = uwλ, where w = uwλ for u ∈ Uq(gln).
Let U−Q denote the Uq(gln)-subalgebra generated over Q[q, q−1] by the divided

powers F
(k)
i :=

F k
i

[k]!
, where [k]! = [k][k − 1] · · · [1] and [m] =

qm − q−m

q − q−1
, and let

VQ(λ) = U−Qwλ. We have the following theorem (see [14] and [12]).

Theorem 4.3. There exists a unique Q[q, q−1]-basis {G(T ) | T ∈ SST (λ, n)} of
VQ(λ) with the properties that

(1) G(T ) ≡ ω(T ) mod qLW (λ),

(2) G(T ) = G(T ).

This basis is called the global crystal basis of V (λ).
We now recall the monomial basis for V (λ) which was introduced in [13]. Given

a semistandard λ-tableau T , let i be the smallest integer such that i+1 appears in
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T in a row with row number less than i+ 1. Let r1 be the number of occurrences
of i + 1 that appear in any row with row number less than i + 1 and let i1 = i.
Form a new λ-tableau T1 by replacing the r1 occurrences of i+ 1 by i. Repeat the
procedure with T1 to give integers r2 and i2 and a tableau T2. After the procedure
terminates to give T (λ), we obtain two sequences (i1, i2, . . . , is) and (r1, r2, . . . , rs).

Define a(T ) = F
(r1)
i1
· · ·F (rs)

is
∈ Uq(gln)−.

Example 4.4. If T = 1 2 2 3 4
3 4 4

then a(T ) = F
(2)
1 F

(2)
2 F1F

(3)
3 F

(3)
2 F1.

Given two column increasing λ-tableaux S and T , let S < T if IC(S) < IC(T ).
Lemmas 4.5–4.6 and Theorem 4.7 are proved in [13].

Lemma 4.5. Let T ∈ SST (λ, n) and suppose that a(T )wλ =
∑

S∈CT (λ,n)

αST (q)ω(S)

as a linear combination of basis elements in BW (λ). Then αST (q) ∈ N[q, q−1],
αTT = 1 and αST (q) 6= 0 only if S ≥ T . Furthermore, αST (q) = 0 unless ω(S)
and ω(T ) have the same weight.

It follows from the above lemma that {a(T )wλ | T ∈ SST (λ, n)} is a basis for
V (λ). In the lemma and theorem below, let {G(T ) | T ∈ SST (λ, n)} be the global
basis for V (λ).

Lemma 4.6. Let T ∈ SST (λ, n) and suppose that the expansion of G(T ) in

the basis {a(T )wλ | T ∈ SST (λ, n)} is G(T ) =
∑

S∈SST (λ,n)

βST (q)a(S)wλ. Then

βTT (q) = 1, and βST (q) = 0 unless S ≥ T .

Theorem 4.7. Let T ∈ SST (λ, n) and suppose that G(T ) =
∑

S∈CT (λ,n)

dST (q)ω(S)

as a linear combination of basis elements in BW (λ). Then

(1) dST (q) ∈ Z[q],
(2) dTT (q) = 1 and dST (0) = 0 if S 6= T ,
(3) dST (q) = 0 unless ω(S) and ω(T ) have the same weight and S ≥ T .

Using the above, one can obtain the global crystal basis {G(T ) | T ∈ SST (λ, n)}
by a triangular algorithm. Let T (1), T (2), · · · , T (t) be the tableaux in SST (λ, n)
numbered such that T (λ) = T (1) < T (2) < · · · < T (t). Certainly G(T (t)) =
a(T (t))wλ and, G(T (t−1)) = a(T (t−1))wλ − γt(q)G(T (t)), where γt(q) ∈ Q[q, q−1].

Since G(T (i)) = G(T (i)) for 1 ≤ i ≤ t, γt(q) = γt(q
−1). Furthermore, G(T (t−1)) ≡

ω(T (t−1)) mod qLW (λ), so writing a(T (t−1))wλ − γt(q)G(T (t)) as a linear combi-
nation of basis elements in BW (λ) and using these two facts determines γt(q).

More generally, if one has written each of G(T (i+1)), G(T (i+2)), . . . , G(T (t)) as
a linear combination of basis vectors in BW (λ), then the coefficients in the lin-
ear combination G(T (i)) = a(T (i))wλ − γi+1(q)G(T (i+1)) − · · · − γt(q)G(T (t)) are
completely determined by the facts that

γk(q
−1) = γk(q), 1 ≤ k ≤ t, G(T (i)) ≡ ω(T (i)) mod qLW (λ).

For an example, see [13] or Example 7.5.
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5. Carter-Lusztig Bases and q-Schur algebras

In [18], a quantum version of the Carter-Lusztig basis of the q-Weyl mod-
ule, which is isomorphic to V (λ) as a Uq(gln)-module, is given using elements
in Uq(gln)−. In [3], it is shown that the elements in the Carter-Lusztig basis can
be written in terms of elements in the q-Schur algebra up to a power of q. Since the
q-Schur algebra version of this basis is easier to work with than the Uq(gln) version,
we use it to prove that this basis is related to the Leclerc-Toffin basis by an upper
triangular matrix and provide a method for writing elements in the Leclerc-Toffin
basis using elements in the q-Schur algebra. We then adjust the Leclerc-Toffin
algorithm to obtain the global basis for V (λ) in terms of elements in the q-Schur
algebra. We first recall the construction of the quantum Carter-Lusztig basis.

Define Fi,i+1 = Fi and for |i− j| ≥ 1 define Fij, Eij ∈ Uq(gln) recursively as

Fij = Fi+1,jFi − q−1FiFi+1,j, Eij = EiEi+1,j − q−1Ei+1,jEi.

For a semistandard λ-tableau T with k ≤ n rows, define FT , ET ∈ Uq(gln) by

FT =
∏

1≤i<k, i<j≤n

F
(γij)
ij = F

(γ12)
12 F

(γ13)
13 · · ·F (γ1k)

1k F
(γ23)
23 · · ·F (γ2k)

2k · · ·F (γk−1,k)

k−1,k ,

ET =
∏

1≤i<k, i<j≤n

E
(γij)
ij = E

(γk−1,k)

k−1,k · · ·E(γ2k)
2k · · ·E(γ23)

23 E
(γ1k)
1k · · ·E(γ13)

13 E
(γ12)
12 ,

where γij is the number of j’s in row i of T , and k is the number of columns in T .
For I = (i1, i2, . . . , ir) ∈ I(n, r), let vI = vi1 ⊗ vi2 ⊗ · · · ⊗ vir ∈ V ⊗r. Define

a bilinear form 〈 , 〉 : V ⊗r × V ⊗r → Q[q, q−1] by 〈vI , vJ〉 = δI,J . The following
Lemma reveals the relationship between the two comultiplications ∆ and ∆1.

Lemma 5.1. Let u ∈ Uq(gln), v, w ∈ V ⊗r. Then 〈∆r−1(u)v, w〉 = 〈v,∆r−1
1 (τ(u))w〉.

Proof. It suffices to prove that 〈∆r−1(Fi)vI , vJ〉 = 〈vI ,∆r−1
1 (Ei)vJ〉, where 1 ≤ i <

n and I = (i1, i2, . . . , ir), J = (j1, j2, . . . , jr) ∈ I(n, r).
We have

∆r−1(Fi)vI = vi1⊗· · · vir−1⊗(Fivir)+· · ·+(Fivi1)⊗(Ki,i+1vi2)⊗· · ·⊗(Ki,i+1vir) and

∆r−1
1 (Ei)vJ = vj1⊗· · · vjr−1⊗(Eivjr)+ · · ·+(Eivj1)⊗(Ki,i+1vj2)⊗· · ·⊗(Ki,i+1vjr).

Since 〈vi1 ⊗ · · · ⊗ (Fivik) ⊗ · · · ⊗ (Ki,i+1vir−1) ⊗ (Ki,i+1vir), vJ〉 is the same as
〈vI , vj1 ⊗ · · · ⊗ (Eivjk)⊗ · · · ⊗ (Ki,i+1vjr−1)⊗ (Ki,i+1vjr)〉, for 1 ≤ k ≤ r, the result
follows. �

Note that in the proofs below we will simply write uv instead of ∆r−1(u)v for
u ∈ Uq(gln) and v ∈ V ⊗r but when we are using the action of V ⊗r given by the
comultiplication ∆1, this will always be specified.

Given I = (i1, i2, . . . , ir) ∈ I(n, r), let β(I) = |{(a, b) | a < b and ia 6= ib}|.
From [18], we have both the following identity and Theorem 5.2:

(6) qβ(J)〈∆r−1
1 (u)vI , vJ〉 = qβ(I)〈vI ,∆r−1

1 (τ(u))vJ〉.

Theorem 5.2. The set {FTwλ | T ∈ SST (λ, n)} is a basis for V (λ).
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Proof. In [18], it is proved that {∆r−1
1 (FT )zλ | T ∈ SST (λ, n)} is a basis for

the q-Weyl module, ∆q(λ), which is the Uq(gln)-submodule of V ⊗r, generated by

the highest-weight vector zλ =
∑

σ∈C(λ)

(−q)−`(σ)vIC(λ)σ ∈ V ⊗r. For a given T ∈

SST (λ, n) with IR(T ) = J , write FT zλ =
∑

K∈I(n,r)

aKvK , as a linear combination

of basis elements in V ⊗r. Since each K in the sum has K = Jσ for some σ ∈ Sr,
β(K) = β(J). Furthermore, aK = 〈FT zλ, vK〉 = 〈zλ,∆r−1

1 (ET )zλ〉.
Since β(IC(λ)σ) = β(I(λ)) for σ ∈ C(λ), for each K we have

〈zλ,∆r−1
1 (ET )vK〉 = qβ(K)−β(I(λ))〈∆r−1

1 (FT )zλ, vK〉 = qβ(J)−β(I(λ))〈∆r−1
1 (FT )zλ, vK〉.

It follows that FT zλ = qβ(J)−β(I(λ))∆r−1
1 (FT )zλ so that {FT zλ | T ∈ SST (λ, n)} is

a basis for ∆q(λ). Since the highest weight module ∆q(λ) is isomorphic to V (λ),
the theorem now follows. �

Write TI for the tableau T ∈ CT (λ, n) with column sequence I. Then W (λ) is

an Sq(n, r)-module, with action ξω(TI) =
∑

A∈I(n,r)

ξ(xA,I)ω(TA).

Given vJ ∈ V ⊗r and u ∈ Uq(gln), define θ : Uq(gln) → Sq(n, r) by θ(u)(xI,J) =
〈uvJ , vI〉. The following lemma is proved in [11, Lemma 5.1, 5.2].

Lemma 5.3. Let θ : Uq(gln) → Sq(n, r) be as defined above, let u,w ∈ Uq(gln)
and T ∈ CT (λ, n). Then

(1) θ(uw) = θ(u)θ(w) and
(2) θ(u)ω(T ) = uω(T ).

Define

(
Ki

t

)
=

t∏
s=1

q−s+1Ki − qs−1K−1i
qs − q−s

∈ Uq(gln), for 1 ≤ i, t ≤ n. Suppose

that λ = (λ1, . . . , λk), let ui =

(
Ki

λi

)
and define uλ =

k∏
i=1

ui ∈ Uq(gln).

Lemma 5.4. For each λ ∈ Λ+(n, r), we have θ(uλ) = ξI(λ),I(λ).

Proof. We will prove that θ(uλ) = ξI(λ),I(λ) by showing that uλvI(λ)σ = vI(λ)σ for
σ ∈ Sr and that uλvJ = 0 for J ∈ I(n, r) when J 6= I(λ)σ for any σ ∈ Sr. Since
λi∏
s=1

q−s+1+λi − qs−1−λi
qs − q−s

= 1, we have

uλvI(λ)σ =
k∏
i=1

λi∏
s=1

q−s+1Ki − qs−1K−1i
qs − q−s

vI(λ)σ

=
k∏
i=1

λi∏
s=1

q−s+1qλi − qs−1q−λi
qs − q−s

vI(λ)σ = vI(λ)σ.

Consider J ∈ I(n, r), with J 6= I(λ)σ for any σ ∈ Sr. There must be some
m with 1 ≤ m ≤ k that appears am times in the r-tuple J with am < λm; let
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m be maximal with this property. Then uλvJ =
k∏
i=1

uivJ =
m∏
i=1

ui(α(q)vJ), where

α(q) ∈ Q[q, q−1] and

umvJ =

(
Km

λm

)
vJ =

am∏
s=1

q−s+1Km − qs−1K−1m
qs − q−s

q−amKm − qamK−1m
qam+1 − q−(am+1)

β(q)vJ ,

where β(q) ∈ Q[q, q−1]. But (q−amKm−qamK−1m )vJ = (q−amqam−qamq−am)vJ = 0,
so that uλvJ = 0. �

Let T ∈ SST (λ, n). Denote the entry in the i-th row and j-th column of T by Tij
and define s(T ) = |{(i, j, a, b) | i > j, a < b, Tia = Tjb}|. By definition, s(T ) counts
the number of pairs (ia, jb) for which Tia = Tjb and Tia sits in a row below Tjb and
in a column to the left of Tjb. Define r(T ) = |{(i, a, b) | a < b ≤ λi, Tia 6= Tib}|.

The following theorem is an adjusted version of [3, Theorems 18, 19].

Theorem 5.5. Let T ∈ SST (λ, n) with J = IR(T ). Then

(1) θ(FT )ξI(λ),I(λ) = q−s(T )ξJ,I(λ)
(2) ξI(λ),I(λ)θ(ET ) = q−r(T )ξI(λ),J .

Proof. In [3] it was proved that 〈vI(λ), ξI(λ),I(λ)∆r−1
1 (ET )vK〉 = 0 unless K = J

and that 〈vI(λ),∆r−1
1 (ET )ξI(λ),I(λ)vJ〉 = q−s(T ). By Lemma 3.2, θ(FT )ξI(λ),I(λ) =

θ(FTu
λ) =

∑
Q∈R(λ,n) aQξQ,I(λ). Since

aQ = 〈FTuλvI(λ), vQ〉 = 〈vI(λ),∆r−1
1 (uλET )vQ〉 = 〈vI(λ), ξI(λ),I(λ)∆r−1

1 (ET )vQ〉,

we have aQ = 0 unless Q = J and aJ = q−s(T ).
It was also proved in [3] that 〈vI(λ), ξI(λ),I(λ)∆r−1

1 (FT )vK〉 = 0 unless Q = J and

that 〈vI(λ), ξI(λ),I(λ)∆r−1
1 (FT )vJ〉 = q−r(T ) from which the second statement follows

similarly. �

Let S = {(λ, I, J) | λ ∈ Λ+(n, r), I = IR(T ), J = IR(S) for S, T ∈ SST (λ, n)}.
The main result in [3] gives a codeterminant basis for Sq(n, r).

Theorem 5.6. The set {ξA,I(λ)ξI(λ),B | (λ,A,B) ∈ S} is a basis for Sq(n, r).

The following follows immediately from Theorems 5.5 and 5.6 and Lemma 5.4.

Theorem 5.7. The map θ : Uq(gln)→ Sq(n, r) is surjective.

Remark 2. In [1], another version of the q-Schur algebra is defined using structure
constants arising from flags in vector spaces over a field of q elements, and a
surjective map from Uq(gln) to the q-Schur algebra is also given in that setting.

Corollary 5.8. Let λ ∈ Λ+(n, r). Then V (λ) = {ξwλ | ξ ∈ Sq(n, r)} and the set
{ξJ,I(λ)wλ | J = IR(T ), for T ∈ SST (λ, n)} is a basis for V (λ).

Proof. The first part of the statement follows from Lemma 5.3 and Theorem 5.7
and the second part from Theorems 5.2 and 5.5 and Lemma 5.3. �
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We can reformulate Theorem 4.3 in terms of the q-Schur algebra by first defining
a map − : Sq(n, r)→ Sq(n, r) by

η = θ(u), where η = θ(u) ∈ Sq(n, r), u ∈ Uq(gln).

Then a map − : V (λ)→ V (λ) is given by ξwλ = ξwλ. Note that if ξ = θ(u), then

ξwλ = θ(u)wλ = θ(u)wλ = uwλ = uwλ by Lemma 5.3.

For the next example, consider that if u ∈ Uq(gln) and the expansion of θ(u)ξI(λ),I(λ)

on basis elements in Sq(n, r) is given by θ(u)ξI(λ),I(λ) =
∑

Q∈R(λ,n)

aQξQ,I(λ), then

(7) aQ = θ(u)ξI(λ),I(λ)(xQ,I(λ)) = θ(u)(xQ,I(λ)) = 〈uvI(λ), vQ〉.

Also note that uλ = uλ so that ξI(λ),I(λ) = ξI(λ),I(λ).

Example 5.9. Let λ = (2, 1) and let T1 = 1 2
3

and T2 = 1 3
2

.

Then ξ(1,2,3),(1,1,2) = θ(F T1u
λ) = θ(F1F2uλ) = θ(F1F2u

λ) = ξ(1,2,3),(1,1,2),

and ξ(1,3,2),(1,1,2) = θ(F2F1u
λ− qF1F2u

λ)ξI(λ),I(λ) = θ(F2F1)ξI(λ),I(λ)− qξ(1,2,3),(1,1,2).
We have θ(F2F1)ξI(λ),I(λ) =

∑
Q∈R(λ,n)

aQξQ,I(λ), where aQ = 〈F2F1vI(λ), vQ〉. Cal-

culating F2F1vI(λ) and extracting coefficients of basis elements vQ, where Q gives
the row sequence of a row increasing tableau, yields θ(F2F1)ξI(λ),I(λ) = ξ(1,3,2),(1,1,2)+
q−1ξ(1,2,3),(1,1,2). Thus

ξ(1,3,2),(1,1,2) = ξ(1,3,2),(1,1,2) − (q − q−1)ξ(1,2,3),(1,1,2).

The following theorem is a version of Theorem 4.3 in terms of elements from
the q-Schur algebra.

Theorem 5.10. Suppose that an element ξT ∈ Sq(n, r) is defined for each T ∈
SST (λ, n). The set {ξTwλ | T ∈ SST (λ, n)} is the global crystal basis for V (λ) if
the following properties are satisfied for each T ∈ SST (λ, n):

(1) As a linear combination of basis elements in BW (λ), we have ξTwλ =∑
S∈CT(λ,n)

αSω(S), where αS ∈ Z[q],

(2) ξTwλ ≡ ω(T ) mod qLW (λ),
(3) ξTwλ = ξTwλ.

Proof. Suppose that, for each T ∈ SST (λ, n), we have ξT = θ(uT ) where uT ∈
Uq(gln). By Lemma 5.3, ξTwλ = θ(uT )wλ = uTwλ. We have uTwλ = ξTwλ =
ξTwλ = uTwλ and uTwλ = ξTwλ ≡ ω(T ) mod qLW (λ). Thus {uTwλ | T ∈
SST (λ, n)} = {ξTwλ | T ∈ SST (λ, n)} is the global crystal basis for V (λ). �
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Example 5.11. Referring to Example 5.9, if λ = (2, 1), then the set

{ξ(1,2,3),(1,1,2)wλ, (ξ(1,3,2),(1,1,2) + q−1ξ(1,2,3),(1,1,2))wλ}
is the portion of the global crystal basis corresponding to the weight space V (λ)χ,
where χ = (1, 1, 1).

6. Relationsips between bases

We shall say that a tableau T is diagonally related to a λ-tableau S, T Bd S,
if S can be obtained from T by exchanging an entry a in T with an entry b > a
where a sits in a row below b and in a column left of b. Define BD to be the partial
order defined by extending Bd reflexively and transitively.

Example 6.1. We have
1 3
2 4
3

Bd
1 2
3 4
3

Bd
1 2
3 3
4

and
1 3
2 4
3

BD
1 2
3 3
4

.

Recall that if T has row sequence Q ∈ I(n, r), we denote the column sequence
of T by Qt.

Lemma 6.2. Let λ ∈ Λ+(n, r) and suppose that xM,IC(λ) =
∑

K∈R(λ,n)

akxK,I(λ) as a

linear combination of basis elements. Then, if aK 6= 0, we have TKt ∼R W BD TM
for some tableau W .

Proof. We will use a specific recipe for rewriting xM,IC(λ) as a linear combination
of basis elements. Starting with i = 1, and the left-most xmi in xM,IC(λ), use the
relations (3) to move xmi left of all xsj where xsj sits left of xmi and j > i. Repeat
this procedure for i = 2, . . . , µ1, where µ = (µ1, . . . , µλ1) is the conjugate partition,
and then for each of the resulting summands to get

(8) xM,IC(λ) =
∑
B

cBxB,I(λ).

Now rewrite each xB,I(λ) in the sum using the second of the relations (3) to get∑
K aKxK,I(λ) where each (K, I(λ)) in the sum satisfies (K, I(λ))0 = (K, I(λ)).
If aK 6= 0, then one possibility is that (M, IC(λ))0 = (K, I(λ)), in which case

TKt ∼R TM , and in this case, W = TKt . Otherwise, the fourth property of relations
(3) was used at least once in the above procedure which resulted in xK,I(λ) in the
sum. There is then an xB,I(λ) in the first sum (8) with (B, I(λ))0 = (K, I(λ))
(in other words, TKt ∼R TBt) and the fourth relation was used at least once in
rewriting xM,IC(λ) to get xB,I(λ) in the sum (8). We will show that TBt BD TM .
Since the fourth relation was applied to xM,IC(λ), we have

xM,IC(λ) = · · ·xm1,j1 · · ·xm2,j2 · · ·
= α(q)xm2,j1 · · ·xm1,j2 · · ·+ other terms
= α(q)xM1,IC(λ) + other terms,

where m1 > m2 and j1 > j2. Since j1 > j2, in the tableau TM we have m1 > m2

and m1 sits southwest of m2. It follows that TM1 Bd TM . Either (B, IC(λ))0 =
(M, IC(λ))0 or the fourth relation can be applied again to xM1,IC(λ) to get TM2 Bd
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TM1 Bd TM . Inductively, we have TBt Bd · · · Bd TM1 Bd TM , so that TBt BD TM .
Consequently, TKt ∼R TBt BD TM . �

Lemma 6.3. Suppose that S ∈ RT (λ, n) and let Q denote the row sequence of
S. Then, as a Q[q, q−1]-linear combination of basis elements in BW (λ), we have

ξQ,I(λ)wλ =
∑

T∈CT (λ,n)

bTω(T ), where if bT 6= 0, then S ∼R W1 BD W2 ∼C T, for

some λ-tableaux W1 and W2.

Proof. We have ξQ,I(λ)wλ =
∑

A∈I(n,r) ξQ,I(λ)(xA,IC(λ))ω(TA). By Lemma 6.2, for

each A in the sum we have xA,IC(λ) =
∑

(K,I(λ))∈J

cAKxK,I(λ), where cAK = 0 unless

TKt ∼R W1 BD TA. Since (K, I(λ)), (Q, I(λ)) ∈ J , ξ(Q,I(λ))(x(K,I(λ))) = 0 unless
K = Q. Thus ξQ,I(λ)wλ =

∑
A∈I(n,r) c

A
Qω(TA), where for each A in the sum,

S ∼R W1 BD TA. It may be that TA is not column increasing, in which case
ω(TA) = ±ω(T ), where TA ∼C T and T is column increasing, so that ω(T ) ∈
BW (λ). �

Lemma 6.4. Suppose that T ∈ SST (λ, n) and that T ∼R W BD S for λ-tableaux
W and S. Then T ≤C S and, if U is equal to the λ-tableau obtained by rewriting
the columns of S in increasing order, then T ≤C U .

Proof. If T ∼R W , then T ≤C W . Furthermore, if W Bd W1 Bd · · · Bd Wk Bd S,
where W 6= S, an inductive argument shows that W ≤C S so that T ≤C S. To see
that T ≤C U , where U comes from S by rewriting its columns to be increasing,
consider the left-most column where T and U differ. Since all columns prior to
this column contain the same entries in both T and U , the smallest entry in
this column of U that is different from one in T must have arisen through a row
exchange with an entry larger than one in T , possibly combined with a number of
diagonal exchanges, which again increase entries. Thus the column sequence of T
associated to this column is less than that of U and so T ≤C U . �

Corollary 6.5. Let T ∈ RT (λ, n) and let Q be the row sequence of T . Then

ξQ,I(λ)wλ =
∑

TA∈CT (λ,n)

bAω(TA), where for each TA in the sum, TQt ≤C TA and

bQt = qε(Q
t,IC(λ)).

Proof. We have ξQ,I(λ)wλ =
∑

A∈I(n,r)

ξQ,I(λ)(xA,IC(λ))ω(TA) and ξQ,I(λ)(xA,IC(λ)) con-

tributes to the coefficient bQt of ω(TQ) if and only if TA = TQtσ for some σ ∈ C(λ).
However, using Lemma 6.2, ξQ,I(λ)(xQtσ,IC(λ)) = 0 for σ ∈ C(λ) unless σ is the
identity permutation. Thus

bQt = ξQ,I(λ)(xQt,IC(λ)) = ξQ,I(λ)(q
ε(Qt,IC(λ))xQ,I(λ) +

∑
(S,T )

xS,T ),

where the pairs (S, T ) in the sum satisfy (S, T )0 = (S, T ) and (S, T ) > (Qt, IC(λ))
by Lemma 3.1. It follows that bQt = qε(Q

t,IC(λ)) 6= 0. �
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Let SST (λ, n) = {Q ∈ I(n, r) | Q = IR(T ) for some T ∈ SST (λ, n)}. An
immediate consequence of the following theorem is that the global crystal basis
and Carter-Lusztig basis for V (λ) are related by an upper triangular invertible
matrix.

Theorem 6.6. Let T be a semistandard λ-tableau with row sequence J and sup-

pose that a(T )wλ =
∑

Q∈SST (λ,n)

aQξQ,I(λ)wλ is the expansion of a(T )wλ in the basis

{ξQ,I(λ)wλ | Q ∈ SST (λ, n)}. Then

(1) aJ = q−s(T ), and
(2) if aQ 6= 0, then ω(TQt) and ω(T ) have the same weight and T ≤C TQt.

Proof. The fact that each Q with aQ 6= 0 corresponds to ω(TQt) with the same
weight as ω(T ) follows from Lemma 4.5 combined with Lemma 6.3. Suppose that
some Q in the sum has TQt < T and choose K so that Kt is minimal with this
property. By Corollary 6.5, when each ξQ,I(λ)wλ is written as a Q[q, q−1]-linear
combination of basis elements in BW (λ), ω(TKt) only appears in ξK,I(λ)wλ, and it
appears with non-zero coefficient and so appears with non-zero coefficient in the
sum a(T )wλ, which is not possible by Lemma 4.5.

Thus a(T )wλ =
∑

Q∈SST (λ,n)

aQξQ,I(λ)wλ = aJξJ,I(λ)wλ+
∑

Q∈SST (λ,n)

aQω(TQt), where

eachQ in the sum has TQt > T . But aJξJ,I(λ)wλ = qε(J
t,IC(λ))aJω(T )+

∑
B aBω(TB),

where each ω(TB) ∈ BW (λ) with TB > T . Furthermore, a(T )wλ = ω(T ) +∑
L cLω(TL) where TL > T . It follows that aJ = q−ε(J

t,IC(λ)).
Write J t = (j1, j2, . . . , jr) and IC(λ) = (i1, i2, . . . , ir). If ia = ib, then ja and jb

belong to the same row and, since T is semistandard, ja < jb. It follows that

ε(J t, IC(λ)) = {(a, b) | a < b, ja = jb, ia > ib}.

If ja belongs to column k of T and jb belongs to column `, then ja = Tiak and
jb = Tib` and, since T is semistandard, ` < k whenever ja = jb and a < b. Thus
ε(J t, IC(λ)) = {(k, `, ia, ib) | ` < k, Tiak = Tib`, ia > ib} = s(T ). �

7. An algorithm for writing the global crystal basis in terms of
elements from the q-Schur algebra

The algorithm from [13] allows us to write each element of the global crystal
basis vectors from V (λ) in terms of elements a(T )wλ from the Leclerc-Toffin basis.
The map θ : Uq(gln) → Sq(n, r) can then be exploited to write each a(T )wλ in
terms of elements from the q-Schur algebra. We first establish two lemmas which
shorten computation time.

If a(T ) = F
(r1)
i1
· · ·F (rs)

is
∈ Uq(gln)−, define b(T ) = τ(a(T )) = E

(rs)
is
· · ·E(r1)

i1
∈

Uq(gln)+. Since it is often easier to find 〈vI(λ), b(T )vQ〉 than 〈a(T )vI(λ), vQ〉, the
following lemma is quite useful.

Lemma 7.1. Let T ∈ SST (λ, n), and let Q denote the row sequence of T . Then

〈a(T )vI(λ), vQ〉 = qr(T )−s(T )〈vI(λ), b(T )vQ〉.
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Proof. Using Lemma 5.1 we have 〈a(T )vI(λ), vQ〉 = 〈vI(λ),∆r−1
1 (b(T ))vQ〉. By (1),

〈vI(λ),∆r−1
1 (b(T ))vQ〉 = qβ(Q)−β(I(λ))〈∆r−1

1 (a(T ))vI(λ), vQ〉
= qβ(Q)−β(I(λ))〈vI(λ), b(T )vQ〉.

Now, β(Q) counts the number of pairs (a, b) in T where a and b belong to the
same row but a < b plus the pairs where a 6= b and b belongs to a row below a.
Furthermore, β(I(λ) counts the pairs (a, b) in T where b sits in a row below a.
Thus, β(Q)− β(I(λ)) = r(T )− s(T ). �

The following lemma allows us to classify the Q ∈ R(λ, n) that yield a non-zero

coefficient aQ in the linear combination θ(a(T ))ξI(λ),I(λ) =
∑

Q∈R(λ,n)

aQξQ,I(λ). We

first give a simple example to illustrate the result.

Example 7.2. Let λ = (2, 1) and consider the λ-tableau T = 1 3
2

. Then

a(T )v1 ⊗ v1 ⊗ v2 = v1 ⊗ v3 ⊗ v2 + q−1v1 ⊗ v2 ⊗ v3 + qv3 ⊗ v1 ⊗ v2 + v2 ⊗ v1 ⊗ v3.
Consider the tableaux TMt arising from the 3-tuples M that appear in the linear
combination a(T )vI(λ) =

∑
M aMvM . We have

1 3
2

∼R 3 1
2

and 1 3
2

BD 1 2
3

∼R 2 1
3

.

Lemma 7.3. Suppose that T is a semistandard λ-tableau. If 〈a(T )vI(λ), vK〉 6= 0,
then T BD W ∼R TKt for some λ-tableau W .

Proof. We will show that a(T )vI(λ) =
∑

K aKvK where, for each aK 6= 0, we have
T BD W ∼R TKt for some λ-tableau W . To make the connection with Young
tableau more readily apparent, we will associate vM ∈ V ⊗r with the tableau TMt

(not to be confused with ω(TMt) ∈ W (λ) which would be zero if TMt contained
two equal column entries, while the corresponding vM would not be zero). Instead
of writing a(T )vI(λ), for instance, we will write a(T )T (λ) and keep track of the
effect of applying the Fi’s in this way. We write FiTMt =

∑
B aBTBt when FivM =∑

B aBvB.
The proof is by induction on the number of entries ` in T , 1 ≤ ` ≤ n, that

belong to a row r with ` 6= r. Suppose first that there is one such ` and let r be
the highest row in T in which there is an ` with r < `. Then all `’s in T appear

below row r− 1 and above row `+ 1 and a(T )T (λ) = F
(k0)
`−1,`F

(k1)
`−2,`−1 · · ·F

(kj)
r,r+1T (λ).

Suppose that T0 is the tableau that comes from T by changing all `’s above row `
to ` − 1, T1 is the tableau that comes from T0 by changing all ` − 1’s above row
`− 1 in T0 to `− 2, . . ., Tj comes from changing all r+ 2’s above row r+ 2 of Tj−1
to r+ 1’s (in other words, Tj is the same as T (λ) except that the kj rightmost r’s
in row r have been changed to r + 1’s).

Then F
(kj)
r,r+1T (λ) = Tj +

∑
α Tα where the sum

∑
α Tα runs over the non-

semistandard Tα that come from T (λ) by replacing kj entries in row r with r+1; in
particular, Tα ∼R Tj for each α. Below, we will use the fact that, if FiS =

∑
k akTk,
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for a tableau S, and S ∼R W , then whenever am 6= 0 in the sum FiW =
∑

m amTm,
we have Tm ∼R Tk for some ak 6= 0.

Applying F
(kj−1)
r+1,r+2 to Tj yields a sum of tableaux that come from replacing kj−1

entries equal to r+ 1 in Tj with r+ 2. If we change the kj rightmost r+ 1’s in row
r of Tj to r+ 2’s and the rightmost kj−1− kj entries equal to r+ 1 in row r+ 1 of

Tj, to r+ 2’s, we obtain Tj−1. The other tableaux in the sum F
(kj−1)
r+1,r+2Tj are either

row equivalent to Tj or come from changing t < kj entries equal to r + 1 in row r
to r + 2 and kj−1 − t entries in row r + 1 to r + 2. If such a tableau Tβ is weakly
row increasing, then Tj−1 BD Tβ by interchanging a series of r + 1’s in row r + 1
with r + 2’s in row r. If not, Tβ will be row equivalent to such a tableau.

None of the tableaux obtained from applying F
(kj−1)
r+1,r+2 to

∑
α Tα will be row

increasing, but since Tj ∼R Tα, any S in the sum F
(kj−1)
r+1,r+2Tα will be row equivalent

to some Tβ in the sum F
(kj−1)
r+1,r+2Tj. Thus Tj−1 BD W ∼R Tβ ∼R S for some λ-

tableau W . Write

(9) F
(k0)
`−1,`F

(k1)
`−2,`−1 · · ·F

(kj)
r,r+1T (λ) = F

(k0)
`−1,`(T0 +

∑
κ

aκTκ),

where each weakly row increasing Tκ in the sum
∑

κ aκTκ) has T0 BD Tκ and
all other tableaux in the sum are row equivalent to a tableau of that sort. Now,

F
(k0)
`−1,`T0 = T +

∑
α cαTα where every weakly row increasing Tα has T BD Tα and

the other tableaux are row equivalent to one of these, using the same argument
as above.

For the remaining tableaux Tκ in the sum (9), consider first those Tκ that are
weakly row increasing. Since every entry in T0 that sits above row ` − 1 is less
than or equal to `−1 and T0 BD Tκ, every entry in row `−1 of Tκ is equal to `−1.
Thus, there are exactly k0 entries equal to `−1 above row `−1. One tableau that

arises from applying F
(k0)
`−1,` to Tκ is the tableau S where S comes from changing

the k0 entries equal to `− 1 above row `− 1 in Tκ to `’s; certainly S is weakly row
increasing.

Then, if T0 Bd V1 Bd · · · Bd Vr Bd Tκ, we have T Bd V ′1 Bd · · ·V ′r Bd S where
V ′1 comes from T by swapping the entries in the same boxes that were swapped to
get from T1 to V1 (or not at all if this would mean swapping two entries equal to `),

etc. One may also obtain weakly row increasing tableaux from Tκ by using F
(k0)
`−1,`

to change some `−1’s in row `−1 to `’s and some above row `−1 to `’s. Suppose
that V is such a tableau. We have S BD V , by exchanging a series of `− 1’s with

`’s, so T BD S BD V . If F
(k0)
`−1,` is applied to a non-weakly row increasing Tκ′ from

the
∑

κ ακTκ portion of the sum (9), then, since there is a weakly row increasing

Tκ in the sum with Tκ ∼R T ′κ, any tableau V in the sum F
(k0)
`−1,`T

′
κ will also satisfy

T BD W ∼R V for some tableau W . Thus, all non-weakly row increasing tableaux

in the sum F
(k0)
`−1,`(T0 +

∑
κ aκTκ) are either row equivalent to T or row equivalent

to a tableau W with T BD W . This shows that, for T with weight χ with χ` > λ`
and χi = λi for i 6= ` we have a(T )T (λ) = T +

∑
α cαTα where for each cα 6= 0 we

have T BD W ∼R Tα for some tableau W .
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For an arbitrary T , suppose that ` is the smallest entry in T that is in a row x
with x < ` and suppose that r is the smallest row that contains an ` with r < `.
Let T0 be the tableau that comes from T by replacing all `’s above row ` with the

row number to which they belong. Then a(T )T (λ) = F
(k0)
`−1,` · · ·F

(kj)
r,r+1a(T0)T (λ) so

by induction we have a(T )T (λ) = F
(k0)
`−1,` · · ·F

(kj)
r,r+1(T0 +

∑
β

aβTβ), where each Tβ

has T0 BD W ∼R Tβ.
There are no entries equal to x above row x for any x with r ≤ x ≤ ` in T ,

so the same is true of T0. Thus, an argument similar to that above shows that

F
(k0)
`−1,` · · ·F

(kj)
r,r+1T1 = TJ +

∑
α cαTα where T BD W ∼R Tα for some tableau W , for

each cα 6= 0 in the sum.
We can also use a similar argument to that above to prove that, for each weakly

row increasing Tβ in the sum above, F
(k0)
`−1,` · · ·F

(kj)
r,r+1Tβ =

∑
i aiTi, where each Ti

has T BD W ∼R Ti. Since the other tableaux in the sum are row equivalent to
weakly row increasing tableaux, we obtain the result for all Tβ in the sum. �

From the above two lemmas and (7), we obtain the following corollary.

Corollary 7.4. Suppose that T is a semistandard λ-tableau. Then

θ(a(T ))ξI(λ),I(λ) =
∑

Q∈R(λ,n)

aQξQ,I(λ),

where aQ = qr(T )−s(T )〈vI(λ), b(T )vQ〉 and, if aQ 6= 0, then T BD TQt.

In light of the above, we can obtain a linear combination

a(T )wλ = θ(a(T ))ξI(λ),I(λ)wλ =
∑

Q∈R(λ,n)

aQξQ,I(λ)wλ

by considering all TQt ∈ RT (λ, n) with T BD TQt . If for any Q in this sum TQt
is not semistandard, rewrite ξQ,I(λ)wλ as a linear combination of basis elements

ξQ,I(λ)wλ =
∑

(J,I(λ))∈J

aJξJ,I(λ)wλ, where each J from the sum gives a semistandard

λ-tableau TJt . We can then use the algorithm from [13] to write each global crystal
basis vector as a linear combination of vectors from the Leclerc-Toffin basis, which
in turn gives a linear combination of elements from the q-Schur algebra version of
the Carter-Lusztig basis.

Example 7.5.

1. Let λ = (2, 1). The weakly row increasing λ-tableaux with weight χ = (1, 1, 1)

are T1 = 1 3
2

, T2 = 1 2
3

, T3 = 2 3
1

.

In this case, a(T1)wλ ≡ ω(T1) mod qLW (λ) and a(T2)wλ ≡ ω(T2) mod qLW (λ)
so these are the global basis vectors for the weight space V (λ)χ, where χ = (1, 1, 1).
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We have a(T2)wλ = ξ(1,2,3),(1,1,2)wλ and a(T1)wλ = (ξ(1,3,2),(1,1,2) +a1ξ(1,2,3),(1,1,2))wλ.
Computing B(T1)v1 ⊗ v1 ⊗ v2 and employing Corollary 7.4 yields a1 = q−1. Com-
pare with Example 5.11.

2. Let λ = (3, 1) and consider the weakly row increasing λ-tableaux of weight

χ = (1, 2, 1, 0): T1 = 1 2 3
2

, T2 = 1 2 2
3

, T3 = 2 2 3
1

. Let G(T1) and

G(T2) denote the global crystal basis vectors for the weight space V (λ)χ.

We have a(T2)wλ = ξ(1,2,2,3),(1,1,1,2)wλ = G(T2) and, since T1 BD T2, a(T1)wλ =
q−1ξ(1,2,3,2),(1,1,1,2) + aξ(1,2,2,3),(1,1,1,2), a ∈ Q[q, q−1]. But

qr(T2)−s(T2)〈vI(λ), B(T1)v1 ⊗ v2 ⊗ v2 ⊗ v3〉 = q2(q−2 + q−4),

so
a(T1)wλ = q−1ξ(1,2,3,2),(1,1,1,2)wλ + (1 + q−2)ξ(1,2,2,3),(1,1,1,2)wλ.

Since a(T1)wλ ≡ (ω(T1) + (1 + q2)ω(T2)) mod qLW (λ), a(T1)wλ is not a global
crystal basis vector. However, since a(T1)wλ − a(T2)wλ ≡ ω(T1) mod qLW (λ),

G(T1) = a(T1)wλ − a(T2)wλ = q−2ξ(1,2,2,3),(1,1,1,2)wλ + q−1ξ(1,2,3,2),(1,1,1,2)wλ.

It follows that

{ξ(1,2,2,3),(1,1,1,2)wλ, q−2ξ(1,2,2,3),(1,1,1,2)wλ + q−1ξ(1,2,3,2),(1,1,1,2)wλ}
is the portion of the global crystal basis for the weight space V (λ)χ.
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