GLOBAL CRYSTAL BASES AND ¢-SCHUR ALGEBRAS
ANNA STOKKE

ABSTRACT. We prove that the quantized Carter-Lusztig basis for a finite di-
mensional irreducible Ug(gl,,(C))-module V' (X) is related to the global crystal
basis for V' (A) by an upper triangular invertible matrix. We express the global
crystal basis in terms of the ¢-Schur algebra and provide an algorithm for ob-
taining global crystal basis vectors for V() using the ¢g-Schur algebra.

1. INTRODUCTION

Various bases for finite dimensional irreducible polynomial representations of
the quantized universal enveloping algebra U,(gl,(C)) have been given. Each
such U,(gl,)-module is of the form V(X), where X is a partition of a positive
integer into at most n parts, and the dimension of V' (\) is given by the number

of semistandard A-tableaux with entries in the set {1,2,...,n}. Several authors
have studied transition matrices between various bases (see, for instance, [2], [4],
[13]).

The canonical bases or global crystal bases of V(A) due to Lusztig [14] and
Kashiwara [12] have nice properties but can be difficult to compute explicitly.
Algorithms to compute global crystal basis vectors are given by de Graaf in [4] and
Leclerc-Toffin in [13]. By embedding V() into a tensor product of fundamental
modules, Leclerc and Toffin give an intermediate monomial basis for V() which is
shown to be related to the global crystal basis of V() by a unitriangular matrix.
They then obtain the global crystal basis vectors through a triangular algorithm.

Polynomial representations of U,(gl,) can also be studied by means of the ¢-
Schur algebra, S,(n,r). This is a quantized version of the classical Schur algebra
S(n,r) which was defined by J. A. Green [7] as the dual of the coalgebra A(n, )
of homogeneous polynomials of degree r in n? variables z;;, 1 < 4,5 < n. There
are several different approaches to studying ¢g-Schur algebras in the literature (see
[1],[5],16], [17]). We follow the approach taken by J. A. Green, but in the quantum
setting (see [17]), where A,(n) is the coordinate ring of quantum matrices, due
to Manin [15], A,4(n,r) is the rth homogeneous part of A,(n), and S,(n,r) is the
dual A, (n,r)*.

A quantized version of the Carter-Lusztig basis for V()), given in terms of
elements in U,(gl,)", is given in [18]. In [3], we give the Carter-Lusztig basis in
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terms of ¢-Schur algebra elements. The primary aims of the current work are to
describe the global crystal basis in terms of elements in the ¢g-Schur algebra, to
give an algorithm that explicitly provides elements of the global crystal basis using
g-Schur algebra elements, and to prove that the Carter-Lusztig basis and global
crystal basis are related by an invertible, upper triangular matrix.

After recalling the necessary background material, we discuss Leclerc-Toffin’s
intermediate basis in Section 4. We then develop various results regarding g¢-
Schur algebras that allow us to explicitly prove at the end of Section 6 that the
transition matrix between the quantized Carter-Lusztig basis and the Leclerc-
Toffin intermediate basis is upper triangular and invertible, from which it follows
that the Carter-Lusztig basis and global crystal basis are related by an invertible,
upper triangular, matrix. We give a method for determining the entries of the first
matrix in Section 7. This, combined with the algorithm for writing global basis
vectors in terms of the intermediate basis elements allow us to give an algorithm
for finding global basis vectors in terms of ¢-Schur algebra elements.

2. YOUNG TABLEAUX

Let n and r be fixed positive integers and let A = (A, Ag, ..., Ax), where \; >
Ao > .. >N, >0 and Zle A; = r, be a partition of r, denoted A 4 r. Define

A(n,r) ={x= (A, Xa,..., \) 7 | k< n} and

I(n,r) ={I = (i1,92,...,4,) | i, € {1,...n}, 1L <p<r}

All partitions A shall belong to A*(n,r). The Young diagram of shape X\ consists
of k left-justified rows where the i-th row contains \; boxes and a A-tableau is a
filling of the Young diagram of shape A\ with entries from {1,2,...,n}.

A M-tableau is semistandard if it is both column increasing and weakly row
increasing. Denote the set of A-tableau by 7 (A, n) and let

CT(A\n)=A{T € T(A\n)|T is column increasing},
RT(A\,n) ={T € T(\,n)|T is weakly row increasing},
SST(A\,n)={T € T(\n)|T is semistandard}.

The column sequence Ic(T') of T' comes from reading the entries down columns
from left to right and the row sequence Ig(T) from reading the entries across the
rows of T from top to bottom. If I = Ig(T) is the row sequence of T, we will
often write I' to denote the corresponding column sequence Io(T) of T

We will often work with the column and row sequences of the tableau T'(\),
which is obtained by filling the i-th row of the Young diagram of shape A entirely
with i’s. Denote Ir(T(X)) = I(A) and Io(T'(N)) = Ic(N).

The symmetric group acts on I(n,r) by Io = (i1,...,%)0 = (leq), - - lo(r)),
for o € S,, which yields an action on A-tableaux by defining To = S where
Ic(S) = Ic(T)o. Let T be the A-tableau with row sequence Ig(T?) = (1,2,...,7)
and define C'(A) to be the subgroup of permutations in S, that leave the columns
of T invariant and R(\) the subgroup that leaves the rows of 7% invariant. Two
A-tableaux T" and S are row equivalent if T = So for some o € R()\); we denote
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this by T' ~r S. Similarly, T"is column equivalent to S, written T' ~¢ S, if T'= So
where o € C()\).

Example 2.1. If A = (3,2,1) then I(\) = (1,1,1,2,2,3) and Io(\) = (1,2,3,1,2,1).

1]2]2]
For the semistandard A-tableau T'= [3]4| , we have Igx(T) = (1,2,2,3,4,5),
5]
1]2]2] 2[2]1]
Io(T) =(1,3,5,2,4,2) and [3]4 ~r|[4]3] -
) )

3. QUANTIZED ENVELOPING ALGEBRAS AND q—SCHUR ALGEBRAS

Let ¢ be an indeterminate. The quantized enveloping algebra of the complex Lie
algebra gl,,, denoted U,(gl,), is the associative algebra over C(q) with generators
Ei, F;,1<i<n, K;, K;', 1 <i<n and relations as follows:

Kinl == K{lKl‘ = 1 KzKJ - K]KZ

KZE] = qéi’j_éi’j"'lEjKi KZF] = qéi’j+1_§i’jF}Ki

EE; = E;E; if |i — j| > 1 FiF; = F;F,if i — j| > 1
Kiiv1 — Ki}il

EiFj — F}EZ - 5ij 1

q—q
E2E; — (q+ ¢ “E,E;E;+ E;E? =0if i — j| = 1
F2F) — (q+ ¢ WEEE + FF =0if i —j| =1,

where K; ;.1 = K; K. The subalgebra of U,(gl,) generated by all E;, 1 <i<n

is denoted U, (gl,,)* and the subalgebra generated by all F; is denoted by U,(gl,,)".

The natural module is the C(g)-vector space V with basis {vq,...,v,} and
U,(gl,)-action given by Ejvy, = §;v140i, Fyor, = i pvi1, Kyop = ¢°#*vy. This ac-
tion can be extended to V®" via the comultiplication A on U,(gl,) defined by

(1) A(E;) = Ei®1+K, L ®F;, AF)=FEQK;n+10F, AK;) =K;0K;,

1<i<n, 1 <5< n.

Let 7 : U,(gl,) = U,(gl,) be the antiautomorphism given by
T(EJ:FZ T(E):EZ T(KJ>:KJ,1§Z<'NI,1§]§H

Another comultiplication A; : U,(gl,) — U,(gl,) ® U,(gl,,) is given by A; =
T ® 70 AoT1. We then have the following:

(2) AL(E:) = 1QE+E®K; i1, M (F) = KL @ Fi+F,01,A(K)) = K;0K;,
where 1 <i<n, 1<j5<n.

Remark 1. We will need to make minor adjustments to some of the required
results from [3] and [11] since the comultiplication A; was used in those articles.
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For a U,(gl,)-module V' and x = (x1,...,xn) an n-tuple of non-negative in-
tegers, the weight space associated to x is the subspace VX = {v € V | Kjv =
¢iv, 1 <i<n} Ifve VX v#0, then v is said to be a weight vector of weight
X, and v is a highest-weight vector if E;uv =0 for 1 < i < n.

Let A,(n) be the associative C(g¢)-algebra generated by the variables z;;, 1 <
i,j <mn, subject to the relations (see [15], [19], for instance):

Tl = qTikTq 1<k<li<n
(3) TixTik = Tk k 1<i1<j3<n
TaZjl = Tjply 1<i<j<n1<k<l<n

Tty — rprg = (¢ — Quazry 1<i<j<n, 1<k<l<n.

Given I = (i,...,%), J = (J1,...,Jr) € I(n,7), let xy 5 = @i 5, -+ @i j, € Ag(n)
and let A,(n,r) denote the C(g)-subspace of A,(n) generated by the monomi-
als s, where I,J € I(n,r). The algebra A,(n) is a coalgebra, with comulti-
plication given by A(z;;) = Y p_, T @ xy;, and Ay(n,r) is a subcoalgebra of
A,(n). The dual A,(n,r)* = Sy(n,r), is then an associative C(q)-algebra called
the ¢-Schur algebra with multiplication &n(xy ;) = ZAH(W) &(zra)n(za,s), where
&,neSyn,r), xr5€ Ay(n,r).

Let I(n,7)* = I(n,r) x I(n,r) and define

T, r)={(I,J) € I(n,r)? | j1 <jo <---<j, and i < ipy1 when jp = jri1}.

Then {z; ;| (I,J) € J(n,r)}is a basis for A,(n,r) (see [5]). We will often shorten
the notation for J(n,r) to J.

The dual basis {&7; | (1,J) € J(n,r)} for S,(n,r) satisfies & j(zpg) = 1 if
zpg = xry and &1 y(xpg) = 0 otherwise, where (P, Q),(I,J) € J(n,r). For
arbitrary (I, J) € I(n,r)?, we define

§r,g = E ca,Béa,B Where x; ; = E CABTAB-

(A,B)eJ (A,B)eJ

The symmetric group acts on I(n,r) X I(n,r) by (I,J)o = (lo, Jo). Let < be
the lexicographic order on I(n,r) and order I(n,r) x I(n,r) by defining (A, B) <
(I,J)if B< Jor B=Jand A< 1I. Let (I,J)y be the minimal element in the
S,y-orbit containing (1, J).

For I = (iy,i9,...,%), J = (J1,72,---,7r) € I(n,r), let S1 = {(a,b) | a <
b, i, = ip and j, > Jp}, S2 = {(a,b) | a < b, j, = j» and i, > i}, and define
(I, J) = |S1|+S2|. The following two lemmas, the first of which is an adjustment
of [16, Lemma 6.1.2], will be useful throughout the article.

Lemma 3.1. Let I,J € I(n,r). Then xr; = qE(I’J)J:(LJ)O + Z asrxsr,

(ST)eg
(S,T)>(1,J)o

where as € Zlg,q"].
Define R(A\,n) = {Q € I(n,r) | @ = Ir(T) for some T € RT(\,n)} = {Q €
I(n,r) [ (Q,1(N)) € }
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Lemma 3.2. Letn € Sy(n,r) and X € At (n,r). Thennérx,in) = Z aQéq.1(n),

QER(A,n)
where ag € C(q).
Proof. Write n&rx),100) = Z ag.péop as a C(g)-linear combination of ba-
(@Q.P)eg
sis elements. Then agp = n&rx),10)(To,p) = Z N(xg,4)100,100 (a,p). But

Ael(n,r)
£, 100 (@a,p) = 0 unless P ~ I(\) and since (Q, P) € J, we must have P = I()).

Thus n€rn),100) = Z agéo, i, and (Q,I(N\)) € J if and only if the tableau

(QIN)eT
with row sequence () is weakly row increasing. U

4. LECLERC-TOFFIN BASES AND GLOBAL CRYSTAL BASES

We review the relevant results on U, (gl,,)-modules and global bases, for the most
part following [13]. We have a U,(gl,,)-module action on A,(n) given by
(4) By =0k, Fag = 6uzrin, Kaw ="y, Koy =q %oy
and, using (1), we have

E(PQ) = (E:P)Q + (I P)(EQ), Fi(PQ) = (FP)(KiinQ) + P(FQ),

Ki(PQ) = (K;P)(KiQ), P,Q € Ay(n).
Given I = (iy,19,...,%), J = (J1,72,---,Jr) € I(n,7) with i1 < iy < --+ < i,
define the ¢-determinant in A,(n,r) by
ZaeSr(_Q)ie(g)xiljau)xizjm) S Ty 1< Ja < < Jr
det, X! =
Zggsr(—C])%(U)Iia(l)ﬁxia(zm Ty i otherwise.

For k <n,let Ay, = (1,1,...,1,0,...,0) and let T" be a Ag-tableau with column
———

k
sequence Io(T) = (a1, as,...,a;) where a; € {1,...,n} for 1 <i < k. Associate
to T an element w(T") € A,(n,r), called a (one-column) bideterminant by

w(T) = det X %"

a1,a2;,...,ak "

The following lemma follows from the relations (3).

Lemma 4.1. Let T be a one-column Aj-tableau. Then
(1) w(T) =0 if T contains repeated entries and
(2) if T is column increasing and T = So then w(T) = (—q)"Dw(S).

The C(q)-vector space generated by one-column bideterminants w(7) given by
Aj-tableaux is a U,(gl,)-module, called a fundamental module, with action given
by (4); we denote this U,(gl,)-module by V(A). We have the following lemma,
which follows readily by use of the relations (3).

Lemma 4.2. Let T be a one-column Ay-tableau with w(T') # 0.
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(1) If T contains an i + 1, then E;w(T) = w(S) where S is the same as T
except that the i + 1 has been replaced with an i. If T does not contain an
i+ 1, then E;w(T) = 0.

(2) If T' contains an i, then Fiw(T) = w(S) where S is the same as T" except
that the i has been replaced by an i+ 1. If T' does not contain an i, then
Fuw(T) = 0.

(3) If T' contains an i, then Kw(T) = qw(T) and Kw(T) = w(T) otherwise.

Let A\ =>""  a;\; € AT(n,r) and let
W) =V(A)P" @ V(A1) ' @ @ V(A)P".
A basis for W () is given by
By (A ={w(T) | T € CT(\,n)}.

Define wy € W(A) to be the tensor product of the highest-weight vectors of each
V(Ax). Then w, has weight A and is the unique highest-weight vector (up to
scalars) in W(A). The U,(gl,)-module V(X) = U,(gl,,)w, is irreducible and every
finite dimensional irreducible polynomial U,(gl,)-module is isomorphic to some
V(A) where A € AT(n,r). A basis for V()) is indexed by the elements T €
SST (A, n) (see, for instance, [9]).

The canonical basis or (lower) global basis for U,(g)~, where g is a complex
simple Lie algebra, was first introduced by Lusztig in [14]. Another proof of the
existence of canonical bases was later given by Kashiwara in [12]. The canonical
bases induce bases for V(\). For a general introduction to crystal bases, see [§]
or [10]. Following [13], we recall the definition of the global crystal basis of a
U,(gl,)-module V(\).

Let A be the subring of C(q) of rational functions without pole at ¢ = 0. Let
Ly (\) denote the A-lattice in W(A) spanned by the basis elements in By (),
which is the crystal lattice of W(X). Let Ly(A) = Ly /(A) N V(X), which is the
crystal lattice of V().

Define a C(g)-algebra homomorphism on U,(gl,,) that is an involution by

(5) E=E, F,=F, q=q¢', K;=K;', 1<i<n, 1<j<n,
and define W = ww,, where w = uw, for v € U,(gl,).
Let Uy denote the U,(gl,)-subalgebra generated over Q[g, ¢~'] by the divided
k

gt —q "
1

F
powers F*) = U;]', where [k]! = [k][k — 1]---[1] and [m] = and let
: q—4q
Vo(A) = Ugwy. We have the following theorem (see [14] and [12]).
Theorem 4.3. There exists a unique Q[q, ¢ ']-basis {G(T) | T € SST(\,n)} of

V() with the properties that
(1) G(T) = w(T) mod gL (N,

(2) G(T) = G(T).
This basis is called the global crystal basis of V' (X).

We now recall the monomial basis for V' (\) which was introduced in [13]. Given
a semistandard A-tableau T, let ¢ be the smallest integer such that ¢+ 1 appears in
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T in a row with row number less than 7 + 1. Let r; be the number of occurrences
of + + 1 that appear in any row with row number less than ¢ + 1 and let i; = 1.
Form a new A-tableau T} by replacing the r; occurrences of i + 1 by 7. Repeat the
procedure with 7T} to give integers ry and 75 and a tableau T5. After the procedure
terminates to give T'(\), we obtain two sequences (i1, g, . .., i) and (1,72, ...,7s).
Define a(T) = F™ - .. Fi(srs) e Uy(gl,)".

i1

Example 4.4. If T = :_15 i i 3[4/ then a(T) = F1(2)F2(2)F1F§3)F2(3)F1,

Given two column increasing A-tableaux S and 7', let S < T if 1o(S) < Io(T).
Lemmas 4.5-4.6 and Theorem 4.7 are proved in [13].

Lemma 4.5. Let T € SST(\,n) and suppose that a(T)wy = Z asr(q)w(S)
SeCT(An)

as a linear combination of basis elements in By (\). Then asr(q) € Nlg,q¢7],

arr = 1 and agr(q) # 0 only if S > T. Furthermore, asr(q) = 0 unless w(.S)

and w(T') have the same weight.

It follows from the above lemma that {a(T)wy | T € SST(A,n)} is a basis for
V(A). In the lemma and theorem below, let {G(T') | T' € SST(A,n)} be the global
basis for V().

Lemma 4.6. Let T € SST(\,n) and suppose that the expansion of G(T) in
the basis {a(T)wy | T € SST(\,n)} is G(T) = Z Bsr(q)a(S)wy. Then

SESST(An)
Brr(q) =1, and Bsr(q) = 0 unless S > T.

Theorem 4.7. Let T' € SST(A\,n) and suppose that G(T) = Z dsr(q)w(S)
SeCT(An)
as a linear combination of basis elements in By (\). Then
(1) dsr(q) € Z[q],
(2) dTT(Q) =1 and dST(O) =0 ZfS 7é T,
(3) dsr(q) =0 unless w(S) and w(T') have the same weight and S > T.
Using the above, one can obtain the global crystal basis {G(T') | T € SST(\,n)}
by a triangular algorithm. Let 7! T® ... T® be the tableaux in SST(A,n)
numbered such that T(\) = TM < T?) < ... < TO, Certainly G(TW) =
a(TW)wy and, G(TY) = (T V)wy = 7(9)G(TY), where 7(g) € Qlg,q7]-
Since G(T®) = G(TW) for 1 <i < t, 3:(q) = %(qg~"). Furthermore, G(T®*Y) =
w(T®D) mod gLy (N), so writing a(T)wy — 4(q)G(T®) as a linear combi-
nation of basis elements in By (\) and using these two facts determines v;(q).
More generally, if one has written each of G(TU+V), G(TW*2), ... G(TY) as
a linear combination of basis vectors in By (A), then the coefficients in the lin-
ear combination G(T®) = a(TD)wy — 341 (q)G(TTV) — .. — 4,(q)G(TY) are
completely determined by the facts that

W) =w(g), 1<k <t, GTY)=w(T?) mod gLy ().

For an example, see [13] or Example 7.5.
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5. CARTER-LUSZTIG BASES AND ¢-SCHUR ALGEBRAS

In [18], a quantum version of the Carter-Lusztig basis of the ¢-Weyl mod-
ule, which is isomorphic to V() as a U,(gl,)-module, is given using elements
in Uy(gl,)~. In [3], it is shown that the elements in the Carter-Lusztig basis can
be written in terms of elements in the ¢g-Schur algebra up to a power of ¢. Since the
g-Schur algebra version of this basis is easier to work with than the U,(gl,,) version,
we use it to prove that this basis is related to the Leclerc-Toffin basis by an upper
triangular matrix and provide a method for writing elements in the Leclerc-Toffin
basis using elements in the ¢-Schur algebra. We then adjust the Leclerc-Toffin
algorithm to obtain the global basis for V() in terms of elements in the g-Schur
algebra. We first recall the construction of the quantum Carter-Lusztig basis.

Define F; ;11 = F; and for |i — j| > 1 define F};, E;; € Uy(gl,,) recursively as

Ey; = Fi1jF, — ¢ 'FiFij, Eiyj=EiEi;—q "By B
For a semistandard A-tableau 7" with k < n rows, define Fr, Ep € U,(gl,) by

Y

Fp = H plia) _ Fl(;n)Fl(gw) o Fl(z1k)F2(g23) . FQ(IZ%) e Flsz’ﬂl"ék)

ij
1<i<k, i<j<n
(7ij) (Ye—1,k)
Br= I BV = BB EGPEY . EGOEG,
1<i<k, i<j<n
where ;5 is the number of j’s in row ¢ of T', and k is the number of columns in 7.
For I = (iy,49,...,i,) € I(n,r), let v; = v;;, Qs @ - R v;, € V. Define
a bilinear form ( , ) : V" x V¥ — Q[q,q¢ '] by (vs,v;) = d7,5. The following
Lemma reveals the relationship between the two comultiplications A and A;.

Lemma 5.1. Let u € Uy(gl,,), v,w € V®. Then (A" (u)v,w) = (v, AT (7(u))w).

Proof. Tt suffices to prove that (A" Y(F)vr,vs) = (v, AT 1 E)vs), where 1 < i <
nand I = (iy,42,...,%.), J = (J1,72,---,Jr) € [(n,7).
We have

Ar_l(ﬂ)’l][ = Ui1®' i Uz’,«_1®(ﬂvir>+' . ‘+(EU¢1)®(KL,’+1U¢2)®' . -®(Ki,i+1v“) and

ATHE) vy = v, @05, @ (Bwg, )+ 4+ (Biwj,) ® (Kii10s) © - - © (K i4105,).

Since (v, ® -+ @ (Fvy,) @ -+ @ (K i410;, ;) @ (K i41v;,.),v7) is the same as
(v, v, @+ @ (Evj,) ® -+ @ (K i41vj,_,) ® (K i41vj,.)), for 1 <k <, the result
follows. O

Note that in the proofs below we will simply write uv instead of A" !(u)v for
u € Uy(gl,) and v € V& but when we are using the action of V" given by the
comultiplication Aq, this will always be specified.

Given I = (iy,i2,...,4,) € I(n,r), let B(I) = |{(a,b) | a < band i, # ip}|
From [18], we have both the following identity and Theorem 5.2:

(6) " AT (wor, vg) = ¢ or, AT ())ug).
Theorem 5.2. The set {Frwy | T € SST(\,n)} is a basis for V().
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Proof. In [18], it is proved that {A"'(Fr)zy | T € SST(\,n)} is a basis for
the ¢-Weyl module, A,()), which is the U,(gl,)-submodule of V®", generated by
the highest-weight vector z), = Z (—q)_g(")vfco\)a € V¥, For a given T €
oeC(N)
SST(A\,n) with Ig(T) = J, write Frz, = Z axVK, as a linear combination
Kel(n,r)
of basis elements in V®". Since each K in the sum has K = Jo for some o € S,,
B(K) = B(J). Furthermore, ax = (Frzx,vx) = (2, AT (Er)2).
Since S(Ic(N)o) = B(I(N)) for o € C(N), for each K we have
(20, AT H(Er)vg) = ¢"FPUONATY(Fr) 2y, vx) = 7D PUONATY (Fr) 2y, vk ).

It follows that Frzy = ¢ PUCIATY(F)zy so that {Frzy | T € SST(\,n)} is
a basis for A,()). Since the highest weight module A,(\) is isomorphic to V' ()),
the theorem now follows. g
Write 77 for the tableau T € C'T'(A,n) with column sequence I. Then W () is
an Sy(n,r)-module, with action {w(T7) = Z E(rar)w(Ta).
Ael(n,r)

Given vy € V¥ and u € Uy(gl,,), define 6 : U,(gl,,) — Sy(n,7) by 0(u)(xr,) =
(uvy,vr). The following lemma is proved in [11, Lemma 5.1, 5.2].

Lemma 5.3. Let 6 : Uy(gl,,) — Sy(n,r) be as defined above, let u,w € Uy(gl,)
and T € CT(\,n). Then

(1) O(uw) = O(u)f(w) and

(2) O(u)w(T) = uw(T).

K i —s-HK S— IK 1
Define ( ; ) = H e e U,(gl,), for 1 <i,t < n. Suppose
polet q* —q*

K;
that A = (Aq, ..., \p), let u; = ) and define v —HuZEU(g[ ).
)\Z =1
Lemma 5.4. For each A € AT (n,r), we have 8(u*) = &0,
Proof. We will prove that 0(u?) = & 1,7y by showing that uAvl(,\)U = Vr(\)e for

o € S, and that v*v; = 0 for J € I(n ,7“) when J # I(\)o for any o € S,. Since
Ai st 14N s—1-N

H a i] =1, we have
e qS — q S
R B koA ¢TK, — qs—lKi—l
U ViNe = H — Vine
i=1 s=1 A
koM qfs+1q)\i _ qsfqu)\i
= Vr(\)e = Vi(N)o-
}—Il 11 ¢ —q ) ™)

Consider J € I(n,r), with J # I(\)o for any o € S,. There must be some
m with 1 < m < k that appears a,, times in the r-tuple J with a,, < A.,; let
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k m

m be maximal with this property. Then u*v; = HUZ‘UJ = HUi(()Z(q)UJ), where

=1 =1
a(q) € Q[g,¢7"] and

K—m am, q—5+1Km _ qs—lKal q—ame _ qa7rLK77_11
UmVj = ()\ )UJ:H Blq)vy,

S _ 4—S am+1 _ 4—(am+1
poe ¢ —q q g~ (am+D)

where 3(q) € Q[g,q7']. But (¢ K,, — ¢~ K} vy = (¢ *"q*™ — q*mq " )v; = 0,
so that v*v; = 0. O

Let T' € SST(A,n). Denote the entry in the i-th row and j-th column of T" by T;;
and define s(T") = [{(4,j,a,b) | i > j, a < b, T;, = Tj}|. By definition, s(T") counts
the number of pairs (ia, jb) for which T}, = T}, and T}, sits in a row below T}, and
in a column to the left of Tj,. Define 7(T") = |{(i,a,b) | a < b < X;, Tiq # Tip}|-

The following theorem is an adjusted version of [3, Theorems 18, 19].

Theorem 5.5. Let T € SST(\,n) with J = Ig(T). Then

(1) O(Fr)éronao = a0

(2) &1 wb(Er) = ¢ e
Proof. In [3] it was proved that (vrv), &1 100AT (Er)vk) = 0 unless K = J
and that <UI(>\),Ag_l(ET)f[()\)J(A)UJ> = qiS(T). By Lemma 3.2, H(FT)fl()\),I(A) =
O(Fru*) = ZQGR(/\M aoo,1(n)- Since

ag = (Frutviny, vo) = (viy, AT (0 Er)vg) = (viny, Eron, 10 AT (Br)vg),
we have ag = 0 unless ) = J and a; = g™,

It was also proved in [3] that (vi(n), &0 AT (Fr)vk) = 0 unless @ = J and
that (vy(y), 5[()\)7[(/\)A§_1(FT)UJ> = ¢ from which the second statement follows
similarly. U

Let S={(\, I, J) | x€ At(n,r), I =Ix(T), J = Ig(S) for S, T € SST(\,n)}.

The main result in [3] gives a codeterminant basis for S,(n,r).

Theorem 5.6. The set {41080, | (M A, B) € S} is a basis for Sy(n,r).
The following follows immediately from Theorems 5.5 and 5.6 and Lemma 5.4.
Theorem 5.7. The map 0 : U,(gl,) = S,(n,r) is surjective.

Remark 2. In [1], another version of the ¢-Schur algebra is defined using structure
constants arising from flags in vector spaces over a field of ¢ elements, and a
surjective map from U,(gl,) to the g-Schur algebra is also given in that setting.

Corollary 5.8. Let A € AT (n,r). Then V(X) = {&wy | £ € Sy(n,r)} and the set
{E&rioywa | J = Ig(T), forT € SST(A,n)} is a basis for V(A).

Proof. The first part of the statement follows from Lemma 5.3 and Theorem 5.7
and the second part from Theorems 5.2 and 5.5 and Lemma 5.3. U
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We can reformulate Theorem 4.3 in terms of the ¢g-Schur algebra by first defining
amap — : Sy(n,r) = S,(n,r) by

7 =60(u), where n =0(u) € Sy(n,r), ue U,/gl,).
Then a map — : V/(\) — V(X) is given by fwy = Ewy. Note that if € = 0(u), then

Swy = O(u)wy = 0(W)wy = Twy = ww, by Lemma 5.3.

For the next example, consider that if u € U,(gl,,) and the expansion of 9( )E1(0),100)

on basis elements in Sy(n,r) is given by 0(u)&ron. () = Z aoéo,1(n), then
QER(A\,n)

(7) aq = 0(w)&rn, 100 (1) = 0(u)(zq100) = (Uvi(n), vq)-
Also note that u» = u* so that EI()\),I(A) = E1(0), 100 -

Example 5.9. Let A = (2,1) and let T} = ; 2] and T, = ; 3 ‘

Then 5(1,2,3),(1,1,2) = H(FTlu/\) = 0(F1Fut) = H(Fngu)‘) = §(1,2,3),(1,1,2)
and &) 39 1.19) = O(F2F1u* — qFLFu?)Er00,100 = 0(FaF1)E00,100) — 460.2,3),(1,1.2)-
We have Q(FQFl)f]()\)J()\) = Z CLQfQJ()\), where ag = <F2F1U[(>\),UQ>. Cal-
R(An
culating FyFivry) and extractiqrzleg ((;oezfﬁcients of basis elements vg, where ) gives
the row sequence of a row increasing tableau, yields H(FgFl)fl(,\)J(A) =u32),0,1,2)+F
q715(1,2,3),(1,1,2)- Thus

5(1,372),(1,172) = 5(1,372)7(1,1,2) - (q - q_1)§(172,3)7(17172).

The following theorem is a version of Theorem 4.3 in terms of elements from
the ¢-Schur algebra.

Theorem 5.10. Suppose that an element & € Sy(n,r) is defined for each T €
SST (A, n). The set {&rwy | T € SST(A\,n)} is the global crystal basis for V(\) if
the following properties are satisfied for each T € SST(\,n):

(1) As a linear combination of basis elements in By ()\), we have &rw, =

Z asw(S), where ag € Zlq],
SeCT(A\n)
(2) §rwy = w(T) mod qLw (A),
(3) §rwx = &rwy.

Proof. Suppose that, for each T' € SST(\,n), we have & = 0(ur) where ur
Uq(g[n) By Lemma 53, fT’UJ)\ = Q(UT)’UJ/\ = UTW). We have Urw, = fTw,\
Erwy = urwy and upwy, = &rwy = w(T) mod gLy (N). Thus {urwy | T
SST(A,n)} = {&rwy | T € SST(A,n)} is the global crystal basis for V' (\).

Om I m
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Example 5.11. Referring to Example 5.9, if A = (2, 1), then the set

{5(172,3),(1,1,2)11))\7 (5(1,3,2),(1,1,2) + 9715(1,2,3),(1,1,2))w>\}

is the portion of the global crystal basis corresponding to the weight space V' (\)X,
where x = (1,1, 1).

6. RELATIONSIPS BETWEEN BASES

We shall say that a tableau T is diagonally related to a A-tableau S, T >4 S,
if S can be obtained from T by exchanging an entry a in 7" with an entry b > a
where a sits in a row below b and in a column left of b. Define > to be the partial
order defined by extending >, reflexively and transitively.

3
4| Ba

2
4| Bg

2
3| and

w
[\]

Example 6.1. We have

e

el

’A;oop—n

[eo]ro] =
S

1
>p 33|
4]

Recall that if T has row sequence @) € I(n,r), we denote the column sequence
of T by Q.

Lemma 6.2. Let A € At (n,r) and suppose that xap 1. (n) = Z aRTK, 1(x) S O
KeR(A\n)

linear combination of basis elements. Then, if ax # 0, we have Tkt ~g W >p Ty

for some tableau W'.

Proof. We will use a specific recipe for rewriting xys s, (1) as a linear combination
of basis elements. Starting with ¢ = 1, and the left-most w,,; in @7 7.(»), use the
relations (3) to move x,,; left of all z,; where x; sits left of x,,; and j > i. Repeat
this procedure for i = 2, ..., uy, where pp = (1, . .., gy, ) is the conjugate partition,
and then for each of the resulting summands to get

(8) TMIc(\) = Z CBTBI(N)-
B

Now rewrite each xp ¢y in the sum using the second of the relations (3) to get
>k 0x Tk, 1(n) Where each (K, I(\)) in the sum satisfies (K, I()))o = (K, 1(N)).

If ax # 0, then one possibility is that (M, Ic(N))e = (K, I())), in which case
Tt ~g Ty, and in this case, W = Tk+. Otherwise, the fourth property of relations
(3) was used at least once in the above procedure which resulted in g ;(5) in the
sum. There is then an xp;(\) in the first sum (8) with (B,1()X))o = (K,I()))
(in other words, Tkt ~g Tgt) and the fourth relation was used at least once in
rewriting sz, to get xp 1y in the sum (8). We will show that Ts >p Tyy.
Since the fourth relation was applied to w7 1. (), we have

xM,Ic()\) = '”mmhjl ...xm27j2,,,
= Q(Q)Im2,j1 o Tmy gttt + other terms
= a(q)a 1) + other terms,

where m; > mg and j; > jo. Since j; > jo, in the tableau T, we have m; > mao
and m; sits southwest of mo. It follows that Ty, >4 Tyy. Either (B, Io(N))o =
(M, Ic(X))o or the fourth relation can be applied again to za, 1.(x) to get Thg, >4
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Ty g Thr. Inductively, we have Tt >y -+ - g Tar, g Ty, so that Tge >p Ty
Consequently, Tkt ~r Tt >p Th. O

Lemma 6.3. Suppose that S € RT(A\,n) and let QQ denote the row sequence of

S. Then, as a Q[q,q ']-linear combination of basis elements in By (\), we have

§o,100Wx = Z brw(T), where if by # 0, then S ~g Wi >p Wy ~¢ T, for
TeCT(An)

some A-tableaur Wi and Wh.

Proof. We have {o1o0Wxn = 3 acinr §@100(Ta100))w(Ta). By Lemma 6.2, for

each A in the sum we have x4 7.0 = Z c‘;}:cKJ(A), where cf‘( = 0 unless
(K, I(\)eT

Txt ~gr Wi >p Ty4. Since (K, I(/\)), (Q,I(/\)) e J, g(Q,I(/\))(x(K,I(A))) = 0 unless

K = Q. Thus {oroywn = 2 acinn cow(Ts), where for each A in the sum,

S ~r Wy >p Tha. It may be that T4 is not column increasing, in which case

w(Tx) = tw(T), where Ty ~c T and T is column increasing, so that w(7T) €
B (). O

Lemma 6.4. Suppose that T € SST(A\,n) and that T ~gr W >p S for A-tableaux
W and S. Then T <¢ S and, if U is equal to the \-tableau obtained by rewriting
the columns of S in increasing order, then T' <o U.

Proof. It T ~r W, then T <o W. Furthermore, if W >q Wi >gq - >g Wi >4 S,
where W # S, an inductive argument shows that W < S so that T" < S. To see
that T" <o U, where U comes from S by rewriting its columns to be increasing,
consider the left-most column where T" and U differ. Since all columns prior to
this column contain the same entries in both 7" and U, the smallest entry in
this column of U that is different from one in 7" must have arisen through a row
exchange with an entry larger than one in 7', possibly combined with a number of
diagonal exchanges, which again increase entries. Thus the column sequence of T'
associated to this column is less than that of U and so T <o U. Il

Corollary 6.5. Let T € RT(\,n) and let Q be the row sequence of T. Then
§o, 100w = Z baw(Ta), where for each Ty in the sum, Tg: <¢ Ta and
TAeCT(An)
by = (@ Tc ),
Proof. We have g rpywy = Z £0.10) (T a, 1000 )w(Ta) and &g 10 (T a,10(x)) con-
Ael(n,r)

tributes to the coefficient by of w(Ty) if and only if T4 = Tyeo for some o € C(N).
However, using Lemma 6.2, &g 1(x)(Zgte,1o0)) = 0 for o € C(A) unless o is the
identity permutation. Thus

bor = o1 (Tariom) = Saum (@@ Mg o + ) wsr),
(S.T)

where the pairs (S, 7T) in the sum satisfy (5,7)o = (S,T) and (S,T) > (Q*, Ic(\))
by Lemma 3.1. It follows that bg: = g (@1 £ 0, O
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Let SST(A\,n) = {Q € I(n,r) | @ = Ig(T) for some T € SST(A\,n)}. An
immediate consequence of the following theorem is that the global crystal basis
and Carter-Lusztig basis for V() are related by an upper triangular invertible
matrix.

Theorem 6.6. Let T' be a semistandard A-tableau with row sequence J and sup-

pose that a(T)wy = Z aoo,i)wx s the expansion of a(T)wy in the basis
QESST (A\n)

{£Q7[(>\)U))\ ’ Q € SST()\,H)} Then

(1) ay=q "), and
2) ifa 0, then w(Tot) and w(T) have the same weight and T <o Toe.
Q Q Q

Proof. The fact that each @) with ag # 0 corresponds to w(7Tg:) with the same
weight as w(T") follows from Lemma 4.5 combined with Lemma 6.3. Suppose that
some @ in the sum has Tge < T and choose K so that K* is minimal with this
property. By Corollary 6.5, when each &g jnyw) is written as a Q[g, ¢~ ']-linear
combination of basis elements in By (A), (TKz) only appears in g rywy, and it
appears with non-zero coefficient and so appears with non-zero coefﬁ<31ent in the
sum a(7T)wy, which is not possible by Lemma 4.5.

Thus a(T)wy = Z ao&o,10)Wx = az€y Wit Z agw(Tgt), where

QESST(An) QESST(Am)

each @ in the sum has Tge > T'. But a;€; pywy = qe(‘]t’IC(’\))a]w( )+> g apw(Th),
where each w(Tg) € Bw(\) with T > T. Furthermore, a(T)w, = w(T) +
> cow(Ty) where Ty, > T. It follows that a; = g <" e V),

Write J' = (j1, ja, - - -, Jr) and Ic(N) = (1,42, ...,4,). If iy = 4y, then j, and j,
belong to the same row and, since T is semistandard, j, < j,. It follows that

6(‘]t7 ]C()‘>> - {((l,b) | a < b7 ja = jb7 ia > Zb}

If j, belongs to column k of 7" and j, belongs to column ¢, then j, = T;, and
J» = T;,¢ and, since T' is semistandard, ¢ < k whenever j, = 5, and a < b. Thus
e(J' Ic(N) = {(k, i, ip) | € < ky Tigk = Tipe, ta > iy = s(T). O

7. AN ALGORITHM FOR WRITING THE GLOBAL CRYSTAL BASIS IN TERMS OF
ELEMENTS FROM THE q—SCHUR ALGEBRA

The algorithm from [13] allows us to write each element of the global crystal
basis vectors from V' (\) in terms of elements a(7")w, from the Leclerc-Toffin basis.
The map 6 : U,(gl,) — S,(n,7) can then be exploited to write each a(T)w, in
terms of elements from the g-Schur algebra. We first establish two lemmas which
shorten computation time.

If a(T) = F'V - F") € Uy(gl,)™, define b(

21

) =T
U,(gl,)". Since it is often easier to ﬁnd (V1. b(T)vg) than (a(T
following lemma is quite useful.

—= i

() = BB €
JUrns vg), the

Lemma 7.1. Let T € SST(\,n), and let Q denote the row sequence of T. Then
(a(T)vin, vg) = ¢ wyn), b(T)vg).
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Proof. Using Lemma 5.1 we have (a(T)vr), vg) = (vrn, A7 H(b(T))vg). By (1),
(010, AT O(T))vg) = P Q@PINIAT a(T))vrr)s v0)
- q'B(Q)_B(I()‘))(U](,\),b(T)U@).
Now, 4(Q) counts the number of pairs (a,b) in T where a and b belong to the

same row but a < b plus the pairs where a # b and b belongs to a row below a.
Furthermore, 3(I(A\) counts the pairs (a,b) in T" where b sits in a row below a.

Thus, 5(Q) — BUI(A)) = r(T) — s(T). U

The following lemma allows us to classify the @ € R(\,n) that yield a non-zero

coefficient ag in the linear combination 6(a(T))&100, 10 = Z aoéo,1(n). We
QER(An)

first give a simple example to illustrate the result.

Example 7.2. Let A = (2,1) and consider the A-tableau T = é 3], Then

a(T)v; @V ® Vg =1, V3 @V + ¢ 01 ® Vg ® V3 + qUz @ V) ® Vg + Vg ® V) @ V3.

Consider the tableaux TMt arising from the 3-tuples M that appear in the linear
combination a(T = > amvy. We have

Lemma 7.3. Suppose that T is a semistandard A-tableau. If (a(T)vin), vi) # 0,
then T >p W ~pg Tt for some \-tableau W.

Proof. We will show that a(T)v;y = Y, axvk where, for each ax # 0, we have
T >p W ~pg Tkt for some A-tableau W. To make the connection with Young
tableau more readily apparent, we will associate vy, € V& with the tableau Ty
(not to be confused with w(Ty) € W(A) which would be zero if Ty contained
two equal column entries, while the corresponding vy, would not be zero). Instead
of writing a(T")vy(y), for instance, we will write a(7")T(\) and keep track of the
effect of applying the F}’s in this way. We write F;Ty = > 5 apTp when Fyuy =
> 5 aBvp.

The proof is by induction on the number of entries ¢ in 7', 1 < ¢ < n, that
belong to a row r with ¢ # r. Suppose first that there is one such ¢ and let r be
the highest row in 7" in which there is an ¢ with » < ¢. Then all ¢’s in T appear
below row r — 1 and above row £+ 1 and a(T)T'(\) = Fe(l_“i)ng(g)f_l e F}ﬁ{ng(A)
Suppose that Tj is the tableau that comes from 7' by changing all ¢’s above row ¢
to £ — 1, T; is the tableau that comes from T; by changing all £ — 1’s above row
{—1inTyto £ —2, ..., T; comes from changing all r +2’s above row r +2 of T;_;
to r+ 1’s (in other words, 7} is the same as T'(\) except that the k; rightmost r’s
in row 7 have been changed to r 4+ 1’s).

Then Ff}lfile(/\) = T; + >, T, where the sum Y T, runs over the non-
semistandard T, that come from T'(\) by replacing k; entries in row r with r+1; in
particular, T,, ~ T for each a. Below, we will use the fact that, if ;.S = >, a;Tk,
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for a tableau S, and S ~p W, then whenever a,, # 0 in the sum F;W =" a,, T,
we have T}, ~r T} for some a; # 0.

Applying FT( +]1 ;12 to T} yields a sum of tableaux that come from replacing k;_;
entries equal to r +1 in 7} with r 4+ 2. If we change the k; rightmost r +1’s in row
r of Tj to r +2’s and the rightmost k;_; — k; entries equal to  +1 in row r + 1 of

T}, to r+2’s, we obtain 7T;_;. The other tableaux in the sum F(Jrl TJZZT are either
row equivalent to T); or come from changing ¢t < k; entries equal to r + 1 in row r
to r +2 and k;_; — t entries in row r 4 1 to r 4 2. If such a tableau T} is weakly
row increasing, then Tj_; >p Tp by interchanging a series of r + 1’s in row r + 1

with 7 4+ 2’s in row 7. If not, T will be row equivalent to such a tableau.
None of the tableaux obtained from applying F(ﬁjﬁ}ﬂ to Y, Tn will be row

r

increasing, but since T ~g T,, any S in the sum Fr(i’f;iQT will be row equivalent

to some T} in the sum Fr(_k;]l TlJ)rzT Thus T;—1 >p W ~g T ~gr S for some M-
tableau W. Write

k k1 k;
(9) Fe(:i),ze(d),eq o 'Fr(,’/‘-ng()\) z 1 13 TO + Z axT, f-c

where each weakly row increasing T, in the sum ) a,7}) has Ty >p T, and
all other tableaux in the sum are row equivalent to a tableau of that sort. Now,
Fe(f[i),zTO =T+ ), caT, where every weakly row increasing T;, has T' >p T, and
the other tableaux are row equivalent to one of these, using the same argument
as above.

For the remaining tableaux 7}, in the sum (9), consider first those 7T}, that are
weakly row increasing. Since every entry in Ty that sits above row £ — 1 is less
than or equal to £ —1 and Ty >p T, every entry in row £ —1 of T}, is equal to £/ —1.
Thus, there are exactly kg entries equal to £ —1 above row £ — 1. One tableau that
arises from applying Fﬁq)g to Ty is the tableau S where S comes from changing
the kg entries equal to £ — 1 above row £ — 1 in T}, to £’s; certainly S is weakly row
increasing.

Then, if To g Vi g - gV, g Ty, we have T >4 V] >y - V! >4 S where
V] comes from T by swapping the entries in the same boxes that were swapped to
get from T3 to V; (or not at all if this would mean swapping two entries equal to ¢),
etc. One may also obtain weakly row increasing tableaux from T, by using F, z(lj(i),e
to change some £ — 1’s in row £ — 1 to £’s and some above row £ —1 to £’s. Suppose
that V is such a tableau. We have S >p V, by exchanging a series of ¢ — 1’s with
Us,soT>p S>p V. If Fﬁ‘i)g is applied to a non-weakly row increasing T/ from
the >, T, portion of the sum (9), then, since there is a weakly row increasing

T, in the sum with T,, ~ T/, any tableau V' in the sum F, e(lf(i%ZTé will also satisfy
T >p W ~g V for some tableau W. Thus, all non-weakly row increasing tableaux
in the sum Fg(f"lzg(T o+ >, a.Ty) are either row equivalent to 7" or row equivalent
to a tableau W with T t>p W. This shows that, for T" with weight y with x, > A,
and x; = \; for i # ¢ we have a(T)T'(\) =T + ), caT, where for each ¢, # 0 we

have T'>p W ~pg T, for some tableau W.
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For an arbitrary 7', suppose that ¢ is the smallest entry in 7" that is in a row x
with z < ¢ and suppose that r is the smallest row that contains an ¢ with r < £.
Let T be the tableau that comes from T by replacing all ¢’s above row ¢ with the

row number to which they belong. Then a(T)T'(\) = Fﬁ% e FT(,]:«JJZM(TO)T()\) Slo)
k

by induction we have a(T)T(\) = FZUE% e Ff’rﬂzl(To + Z agTy), where each Tj
g

has Ty >p W ~p TB'

There are no entries equal to  above row x for any x with r < x < £ in T,
so the same is true of Ty. Thus, an argument similar to that above shows that
Fﬁq)g e qu”;{lel =T;+> , caly where T >p W ~p T, for some tableau W, for
each ¢ # 0 in the sum.

We can also use a similar argument to that above to prove that, for each weakly
row increasing T in the sum above, Fe(ﬁ(i)e e Fr(ff,{ngg = Y. a;T;, where each T;
has T'>p W ~pg T;. Since the other tableaux in the sum are row equivalent to
weakly row increasing tableaux, we obtain the result for all 7 in the sum. Il

From the above two lemmas and (7), we obtain the following corollary.

Corollary 7.4. Suppose that T is a semistandard A-tableau. Then
0(a(T)ronam = >, 4o

QER(An)
where ag = ¢" =T (v, b(T)vg) and, if ag # 0, then T >p T

In light of the above, we can obtain a linear combination

a(T)wy = 0(a(T))rpproywn = Y agbqinwa
QER(A\n)

by considering all Ty € RT(A\,n) with T >p Tie. If for any @ in this sum T
is not semistandard, rewrite {g ;) wy as a linear combination of basis elements

§Q,1 )W = Z ay&7,1()Wx, where each J from the sum gives a semistandard
(LIN)eT

A-tableau T';:. We can then use the algorithm from [13] to write each global crystal

basis vector as a linear combination of vectors from the Leclerc-Toffin basis, which

in turn gives a linear combination of elements from the g-Schur algebra version of

the Carter-Lusztig basis.

Example 7.5.

1. Let A = (2,1). The weakly row increasing A-tableaux with weight x = (1,1,1)

1 3\7T2: 1 2\,T3: 2[3]
2 3 1

are 17 =

In this case, a(T1)wy = w(T1) mod gLy (\) and a(T2)wy = w(Ts) mod gLy ()
so these are the global basis vectors for the weight space V (X)X, where y = (1,1,1).
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We have a(Th)wy = §(1,2,3),1,1,2)wx and a(Tr)wy = (5(1,3,2),(1,1,2) +a15(1,2,3),(1,1,2))wA-
Computing B(T1)v; ® v; @ vy and employing Corollary 7.4 yields a; = ¢~ '. Com-
pare with Example 5.11.

2. Let A = (3,1) and consider the weakly row increasing A-tableaux of weight

Y = (1,2,1,0): T} = ; 23] 1, = ; 22| 7 = % 2[3] 10t ¢(T)) and

G(T3) denote the global crystal basis vectors for the weight space V(A)X.

We have a(Th)wx = &1,22,3),1,1,1,2Wx = G(Ts) and, since T >p To, a(Ti)wy =
qflf(1,2,3,2),(1,1,1,2) +a&(1223),0,1,1,2), @ € Qlg, q~']. But
QT(T2)7S(T2)<UI(/\)7 B(T1)v1 ® va ®va @ v3) = ¢*(¢ >+ ¢,
SO
a(T)wx =q €u232),011,2wx + (1 + q72)§(1,2,2,3) (1,1,1,2) Wx-

Since a(T7)wy (w(T) + (1 + ¢*)w(Tz)) mod qLw (), a(Ty)wy is not a global
crystal basis vector. However, since a(T})wy — a(Ty)wy = w(1y) mod qLw (),

G(Tl) = CL(T1)U1,\ - G(Tz)wA = q_25(1,2,2,3) (1,1,1,2)Wx + ¢ 5(1 2,3,2),(1,1,1,2) Wx.
It follows that

{€1223),011.2Wx ¢ 2022311120 + ¢ €1,23.2),(1,1,1,2Wx}

is the portion of the global crystal basis for the weight space V(\)X.
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