PHYS-4303 Homework 6 Due 7 Nov 2023

This homework is due to https://uwcloud.uwinnipeg.ca/s/dcYrc2Yys2jsSrz by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Compton Effect Griffiths 3.27 and common physics

Consider a photon (massless) of energy E that scatters from an electron (of mass m) at rest. Relativistically, the photon changes energy due to the electron's recoil.

- (a) If the photon's final trajectory makes angle θ with its original trajectory (ie, the scattering angle is θ), show that the photon's final energy E' satisfies $m(E E') = EE'(1 \cos \theta)$. Hint: this was an example in lecture for PHYS-3203.
- (b) The energy of a photon is related to its wavelength λ by $E = 1/\lambda$. Using the result of the previous part, find $\lambda' \lambda$. The change in wavelength is known as the *Compton effect*.

2. Energy and Momentum in CM Frame

Particles A and B with masses m_A , m_B collide. If their total CM frame energy is E_{CM} , what is the energy of the A particle in the CM frame? *Hint:* Call the 4-momenta p_A^{μ} and p_B^{μ} , write $p_B^{\mu} = (p_A + p_B)^{\mu} - p_A^{\mu}$, and square both sides. Remember that the components of the total momentum are $(p_A + p_B)^0 = E_{CM}$ and $(p_A + p_B)^i = 0$ in CM frame.

3. One Gamma Identity

Show that $p_{\mu}p_{\nu}\gamma^{\mu}\gamma^{\nu} = p^2$, where p^{μ} is any 4-vector and γ^{μ} are the Dirac gamma matrices. *Hint:* write the sum as two terms with renamed indices and use symmetry of $p_{\mu}p_{\nu}$.