PHYS-4303 Homework 3 Due 3 Oct 2023

This homework is due to https://uwcloud.uwinnipeg.ca/s/dcYrc2Yys2jsSrz by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Rotations similar to Griffiths 4.21

For spin-1/2 states, the operator that carries out rotations of angle θ around an axis along unit vector \hat{n} is

$$U(\theta, \hat{n}) = \exp\left[i\theta\hat{n}\cdot\vec{\sigma}/2\right] , \qquad (1)$$

where $\vec{\sigma}$ are the Pauli matrices.

- (a) Write the operator corresponding to a rotation of 2π around the z axis for spin 1/2 as a 2×2 matrix. How does it compare to what you expected?
- (b) Construct the 2 × 2 matrix corresponding to a rotation of π around the x axis for spin 1/2. Show that it flips σ_z eigenstate with positive eigenvalue (spin "up") to the one with negative eigenvalue (spin "down"), up to an overall phase.

2. Forbidden Decays inspired by Griffiths 4.37

The η meson is a fairly light, long-lived particle. You will want to look up its properties in the *Review of Particle Physics* particle listings (it is a light unflavored meson).

- (a) What are the isospin I, parity P, and charge conjugation C eigenvalues of the η ?
- (b) Decays of η to 2 π mesons are not observed. What symmetry prevents this decay through strong or electromagnetic interactions? *Hint:* look up the discrete symmetries of the pions.
- (c) The decay $\eta \to \pi^0 \gamma$ is also not observed. What symmetries prevent this decay from occuring through the strong force? What symmetries prevent this decay from occuring through the electromagnetic force? *Hint:* you will also need to look up symmetry eigenvalues for the photon, which appear only in the "particle listings" but not "pdgLive."

3. Isospin and Decays inspired by Griffiths 4.32

The nucleons include the proton and neutron, and there are also excited states of nucleons known as N particles. For example, the N(1710) is a nucleon with a mass near 1700 MeV which can be either positively charged (like an excited proton) or neutral (excited neutron). All nucleons have isospin I = 1/2; positively charged nucleons have $I_3 = +1/2$, and neutral nucleons have $I_3 = -1/2$. *Hint:* you will find the table of Clebsch-Gordon coefficients in the RPP to be helpful

- (a) By considering addition of isospin, estimate the ratio of the number of decays $N^+(1710) \rightarrow p + \pi^0$ to the decays $N^+(1710) \rightarrow n + \pi^+$. Remember that pions have I = 0 with I_3 equal to the pion charge.
- (b) Why do you think there may be more decays $N^+(1710) \rightarrow p + \eta$ than to either nucleon plus pion decay as discussed above? The η particle has I = 0.