PHYS-3202 Homework 5 Due 25 Oct 2023

This homework is due to https://uwcloud.uwinnipeg.ca/s/H4t44ogzdTkskyD by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Work Done on a Forced Oscillator similar to Cline 3.5

Consider a harmonic oscillator with damping α and natural frequency ω_0 that experiences a force $F(t) = F \cos(\omega t)$.

- (a) In class, we found the particular solution for x when the driving force is a complex exponential $F(t) = F \exp(i\omega t)$. If that complex solution is $x_1(t)$, show that $x(t) = (x_1(t) + x_1^*(t))/2$ is a solution for the cosine driving force in this problem. What is the particular solution x(t) for the cosine driving force?
- (b) Remember that the work done on an object by a force F (in 1D) is the time integral of $F\dot{x}$. Find the work done on the oscillator by the force F(t) over one period of length $2\pi/\omega$ for the particular solution (which is the late time solution neglecting transients). *Hint:* you will find angle addition formulas to be helpful when doing integrals.
- (c) The damping force is $-2m\alpha \dot{x}$. Find the power by the damping force at time t and the average power over one period for the steady-state solution. Show that your result is the opposite of the power from the driving force, so the total work done on the oscillator over a period is zero.

2. Exponential Forcing

Consider a damped harmonic oscillator with natural frequency ω_0 and damping coefficient α . Suppose that it experiences a driving force $F(t) = F \exp(-\beta t)$ (with F, β real).

(a) Show that the function $x(t) = A \exp(-\beta t)$ solves the equation of motion and find A (disregard any initial conditions). *Hint:* Newton's second law can be written as

$$m\ddot{x} + 2m\alpha\dot{x} + m\omega_0^2 x = Fe^{-\beta t} . \tag{1}$$

(b) Assuming $\alpha = 0$ (no damping), find the general solution and show that it oscillates with frequency ω_0 at late times. *Hint:* what are the solutions of the homogeneous differential equation?