PHYS-3202 Homework 1 Due 20 Sept 2023

This homework is due to https://uwcloud.uwinnipeg.ca/s/H4t44ogzdTkskyD by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Vector Identity Applications

- (a) Using vector triple-product identities, write $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ in terms of the dot products $\vec{a} \cdot \vec{c}, \vec{b} \cdot \vec{c}, \vec{a} \cdot \vec{d}, \text{ and } \vec{b} \cdot \vec{d}$
- (b) similar to problems by Taylor and by Thornton & Marion An unknown vector \vec{x} satisfies the following equations

$$\vec{a} \times \vec{x} = \vec{b} , \quad \vec{a} \cdot \vec{x} = \phi , \qquad (1)$$

where \vec{a} and \vec{b} are known vectors and ϕ is a given scalar. Find \vec{x} in terms of \vec{a} , \vec{b} , and ϕ . *Hint:* take the cross product of the first equation with a well-chosen vector.

2. A Special Case of Circular Motion

Consider a particle that experiences an acceleration $\vec{a} = B\vec{v} \times \hat{k}$, where B is a constant and \vec{v} is (as usual) the velocity. Assume that the particle moves entirely in the (x, y) plane.

- (a) Find \ddot{x} and \ddot{y} in terms of \dot{x} and \dot{y} .
- (b) Show that circular motion $x = R\cos(\omega t), y = R\sin(\omega t)$ for some particular constant ω satisfies these equations and find ω .

3. Elliptical Motion

Consider a particle moving in a plane with position $\vec{r} = a \cos(\omega t)\hat{i} + b \sin(\omega t)\hat{j}$ with a > b.

- (a) Show that the x and y components of the position describe an ellipse, which has formula $x^2/a^2 + y^2/b^2 = 1$.
- (b) At what time(s) is the velocity \vec{v} perpendicular to the position \vec{r} ?
- (c) Find the squared speed v^2 and the times at which it is extremized. *Hint:* you do not need to find a derivative, although you may.