PHYS-4602 Homework 6 Due 28 Feb 2024

This homework is due to https://uwcloud.uwinnipeg.ca/s/FFJiJMNt9Czgo72 by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Quantum Reality or Not

To answer this question, you will need to watch the video of Sidney Coleman's famous lecture "Quantum Mechanics In Your Face" at https://www.youtube.com/watch?v=EtyNMlXN-sw . (This is part of the reading assignment; the transcript is at https://arxiv.org/pdf/2011. 12671.pdf.)

(a) The Bell experiment considers 2 distinguishable spin 1/2 particles in the singlet (s = 0) total spin state. If \hat{a} and \hat{b} are two unit vectors, show that

$$\left\langle \left(\hat{a}\cdot\vec{S}^{(1)}\right)\left(\hat{b}\cdot\vec{S}^{(2)}\right)\right\rangle = -\frac{\hbar^2}{4}\hat{a}\cdot\hat{b} \ . \tag{1}$$

Hint: Think about a convenient choice of axes and remember that the spin operators are given in matrix form as $S_i \simeq (\hbar/2)\sigma_i$ in terms of the Pauli matrices.

(b) Three electrons are prepared in the so-called "GHZM" spin state

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle_1|\uparrow\rangle_2|\uparrow\rangle_3 - |\downarrow\rangle_1|\downarrow\rangle_2|\downarrow\rangle_3)$$
(2)

described in the video. Show that $|\psi\rangle$ is an eigenstate of the operator $S_x^{(1)}S_y^{(2)}S_y^{(3)}$ and find the eigenvalue.

2. Interpretations of Quantum Mechanics samples from previous midterms

Answer the following questions.

In the first two parts, consider quantum teleportation. Quantum teleportation transfers an unknown state $|\psi\rangle$ from one qubit to another at a distance. This process involves two measurements.

- (a) In the Copenhagen interpretation of quantum mechanics, is quantum teleportation described by a unitary operation? Explain very briefly.
- (b) In the many worlds interpretation of quantum mechanics, is quantum teleportation described by a unitary operation? Explain very briefly.

For the following, choose the best answer from the options given and write a very brief explanation.

(c) Which of the following represents the state of the electron-positron pair (particles 1 and 2) and the two observers A and B after all measurements in a many-worlds interpretation of the EPR experiment as described in the lecture notes?

A. $|\uparrow\rangle_1|\downarrow\rangle_2|\text{sees}\uparrow\rangle_A|\text{sees}\downarrow\rangle_B$ B. $(|\uparrow\rangle_1|\downarrow\rangle_2-|\downarrow\rangle_1|\uparrow\rangle_2)|\text{sees}\uparrow\rangle_A|\text{sees}\downarrow\rangle_B/\sqrt{2}$

C. $(|\uparrow\rangle_1|\downarrow\rangle_2|\text{sees}\uparrow\rangle_A|\text{sees}\downarrow\rangle_B - |\downarrow\rangle_1|\uparrow\rangle_2|\text{sees}\downarrow\rangle_A|\text{sees}\uparrow\rangle_B)/\sqrt{2}$

(d) If I state that whether Schrödinger's cat lives or dies is predetermined by secret physics of the radioactive nucleus before I close it into the box, what type of theory of quantum mechanics am I expressing?
A. Hidden Variables Theorem B. Commune Intermediation – C. Mana Worlds Theorem

A. Hidden Variables Theory B. Copenhagen Interpretation C. Many Worlds Theory D. Bell's Theory

3. Entanglement Yes/No previous midterm sample

Is each of the following pairs entangled? Answer yes or no and explain very briefly.

- (a) The spins of an electron and positron in a total spin s = 0 state, as we discussed for the EPR experiment.
- (b) Two electrons in an atom in the total angular momentum $|2,0\rangle$ state, which is written as $|2,1\rangle = (|1,1\rangle_1|1,0\rangle_2 + |1,0\rangle_1|1,1\rangle_2)/\sqrt{2}$ in terms of the individual electron orbital angular momenta.
- (c) Two qubits, initially in state $|0\rangle|0\rangle$, after application of the Hadamard gate on each qubit followed by the CNOT gate.

4. Quantum Computing Multiple Choice samples from previous midterms

Chose the correct answer for each part. Explain your answers very briefly.

- (a) Consider the NOT gate that acts on one qubit of a quantum computer. Which of the following describes its properties?A. Unitary, not Hermitian B. Hermitian, not Unitary C. Unitary, Hermitian
- (b) Which of the following equals the Hadamard operator \mathbb{H} ? A. $|1\rangle\langle 0| + |0\rangle\langle 1|$ B. $|0\rangle\langle 0| - |1\rangle\langle 1|$ C. $|+\rangle\langle +|+|-\rangle\langle -|$ D. $|+\rangle\langle 0|+|-\rangle\langle 1|$