PHYS-4602 Homework 10 Due 27 March 2024

This homework is due to <https://uwcloud.uwinnipeg.ca/s/FFJiJMNt9Czgo72> by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

1. Fermi's Golden Rule

Consider a sinusoidal perturbation Hamiltonian $H_1 = Ve^{-i\omega t} + V^{\dagger}e^{+i\omega t}$. In the class notes, we found the probability for a transition from state $|1\rangle$ to $|2\rangle$ as a function of time and frequency $ω$. In the following, define $\hbarω_0 = E_2 - E_1$, the difference of the energy eigenvalues of the unperturbed Hamiltonian H₀. We will investigate the transition probability near $\omega = \omega_0$ at large t (at least as long as the probability stays small).

(a) At a fixed (and large) time, the probability is

$$
P = \frac{4|V_{21}|^2 \sin^2[(\omega_0 - \omega)t/2]}{\hbar^2}.
$$
 (1)

Using L'Hospital's rule or just a power series expansion, find the peak transition probability as a function of time.

- (b) Find the values of ω where the probability first vanishes on either side of $\omega = \omega_0$. The difference in these two values tells us the width of the peak.
- (c) For large enough times, approximate the transition probability as a rectangle with the peak value from part [\(a\)](#page-0-0) and width given by half the difference in part [\(b\)](#page-0-1). Integrate this approximate probability function and argue that

$$
P \to \frac{2\pi |V_{21}|^2}{\hbar^2} t\delta(\omega_0 - \omega)
$$
\n(2)

as $t \to \infty$.

This problem shows two things: first, transitions occur only to states at energies related by the perturbation frequency and, second, that there is a constant transition rate (probability per unit time) to the appropriate states. The relationship (2) is known as Fermi's Golden Rule. (There is of course a more rigorous derivation possible.)

2. Magnetic Resonance Spin Flips

Consider a spin-1/2 particle (for example, a proton) with gyromagnetic ratio γ in the presence of a magnetic field

$$
\vec{B} = B_0 \hat{z} + B_1 \cos(\omega t) \hat{x} - B_1 \sin(\omega t) \hat{y}
$$
\n(3)

at its fixed position. This is a magnetic field with a fixed z component and another component rotating in the x, y plane.

(a) Write the Hamiltonian either as a matrix or in terms of spin operators and show that it takes the form $H = H_0 + V e^{-i\omega t} + V^{\dagger} e^{i\omega t}$. Hint: Recall that the Hamiltonian for a charged spin in a magnetic field is $-\gamma \vec{B} \cdot \vec{S}$, and write S_x, S_y in terms of spin raising and lowering operators $S_{\pm} = S_x \pm iS_y$ as defined in GS chapter 4.

- (b) Assume that the rotating field B_1 is much smaller than B_0 . If the spin is initially spin up at $t = 0$, find the transition probability to spin down at a later time t using perturbation theory. *Hint*: Consider the states in the Hamiltonian H_0 and their energy differences first.
- (c) It is also possible to find this transition probability exactly. With the initial conditions given in part [\(b\)](#page-1-0), the solution of the time-dependent Schrödinger equation is

$$
\langle \uparrow | \Psi(t) \rangle = e^{i\omega t/2} \left[\cos \left(\alpha t/2 \right) - i \frac{(\omega - \gamma B_0)}{\alpha} \sin \left(\alpha t/2 \right) \right]
$$

$$
\langle \downarrow | \Psi(t) \rangle = i e^{-i\omega t/2} \frac{\gamma B_1}{\alpha} \sin \left(\alpha t/2 \right)
$$
 (4)

with $\alpha = \sqrt{\gamma^2 B_1^2 + (\omega - \gamma B_0)^2}$. Use [\(4\)](#page-1-1) to find the transition probability from spin up $(| \uparrow \rangle)$ to spin down $(| \downarrow \rangle)$. Find the conditions that this probability is one. Finally, show that it reduces to the perturbation theory result when $\gamma B_1 \ll \omega - \gamma B_0$.