PHYS-3202 Homework 11 NOT DUE

This homework is solely for your use in studying and is not to be handed in.

1. Rotating Lamina

A rigid lamina (planar object) has principal moments I_1 , I_2 , and $I_3 = I_1 + I_2$ (this is the perpendicular axis theorem that we saw on a previous assignment). The components of the angular velocity along the corresponding principal axes are ω_1 , ω_2 , and ω_3 respectively. Show that $\omega_1^2 + \omega_2^2$ is constant. Note: you cannot assume that ω_3 is constant.

2. Finding Principal Axes

Four identical small balls of mass m each are at the following locations in the xy plane: $(x, y, z) = (a, 0, 0), (-a, 0, 0), (a/\sqrt{3}, 2a/\sqrt{3}, 0), (-a/\sqrt{3}, -2a/\sqrt{3}, 0)$. They are held together by very light rods. Treat the balls as idealized point particles and the rods as massless.

- (a) Find the (3D) inertia tensor of this object around the origin.
- (b) Find the principal axes and corresponding moments of inertia for the object.

3. Euler Angles of a Box

In this question, consider a rectangular prism (box) of sides $a \ge b > c$ that rotates as a rigid body. The principle axes \hat{e}_1 , \hat{e}_2 , and \hat{e}_3 are parallel to the sides of length a, b, and c respectively. Initially, \hat{e}_1 , \hat{e}_2 , and \hat{e}_3 are aligned with inertial axes \hat{i} , \hat{j} , and \hat{k} respectively. Choose the correct answer for each part. Explain your answers very briefly. You may use a small box to visualize the rotations.

(a) I rotate the box, so now $\hat{e}_1 = -\hat{k}$, $\hat{e}_2 = \hat{j}$, and $\hat{e}_3 = \hat{i}$. Which Euler angles describe this configuration?

A. $\phi = \pi/2, \theta = 0, \psi = \pi/2$ B. $\phi = \pi/2, \theta = \pi/2, \psi = \pi/2$ C. $\phi = -\pi/2, \theta = -\pi/2, \psi = \pi/2$ D. $\phi = -\pi/2, \theta = \pi/2, \psi = 0$

(b) I return the box to its initial alignment. Then I rotate it by Euler angles φ = π, θ = π/2, and ψ = π. With which inertial axis is ê₂ aligned?
A. -k B. j C. -î D. k