PHYS-4602 Homework 6 Due 1 Mar 2022

This homework is due to https://uwcloud.uwinnipeg.ca/s/yPzo5AdxJx4oCMn by 10:59PM on the due date. Your file(s) must be in PDF format; they may be black-and-white scans or photographs of hardcopies (all converted to PDF), PDF prepared by LaTeX, or PDF prepared with a word processor using an equation editor.

Note that I cannot give an extension on this assignment due to the midterm test.

1. Center of the Box

We insert a particle into an infinite square well with boundaries at $x = \pm a$ in such a way that it is highly localized at the origin, so we can approximate its state as a position eigenket $|x = 0\rangle$. Write $|x = 0\rangle$ as a superposition of energy eigenstates.

2. Momentum Differentiates the Position Operator

Use the rule that $[A, B^n] = n[A, B]B^{n-1}$ when [A, B] commutes with B to prove that $[p, f(x)] = -i\hbar df/dx$, where x and p are 1D position and momentum operators with $[p, x] = -i\hbar$. Assume f(x) can be written as a Taylor series. (Please refer to homework assignment #1 problem 4.)

3. Gaussian Wavepacket

Here we consider the Gaussian wavepacket in 1D at a single instant t = 0, ignoring its time evolution. The state is

$$|\psi\rangle = \int_{-\infty}^{\infty} dx \ Ae^{-ax^2} |x\rangle \ . \tag{1}$$

Some of these results may be useful on future assignments.

- (a) Find the normalization constant A. *Hint:* To integrate a Gaussian, consider its square. When you square it, change the dummy integration variable to y, then change the integral over dxdy to plane polar coordinates. The textbook cover also has a formula for Gaussian integrals.
- (b) Since the wavefunction is even, $\langle x \rangle = 0$. Find $\langle x^2 \rangle$. *Hint:* You can get a factor of x^2 next to the Gaussian by differentiating it with respect to the parameter a.
- (c) Write $|\psi\rangle$ in the momentum basis. *Hint:* If you have a quantity $ax^2 + bx$ somewhere, you may find it useful to write it as $a(x+b/2a)^2 b^2/4a$ by completing the square. Then shift integration variables so it looks like you have a Gaussian again.
- (d) Find $\langle p \rangle$ and $\langle p^2 \rangle$ and show that this state saturates the Heisenberg uncertainty principle. You should not have to do any integrations.

4. Harmonic Oscillator Matrix Elements

Calculate the matrix elements $\langle n|x|n'\rangle$ and $\langle n|p^2|n'\rangle$ for $|n\rangle$, $|n'\rangle$ stationary states of the harmonic oscillator. You *must* use Dirac and operator notation and *may not* carry out any integrals.

5. Previous Midterm Multiple Choice

Choose all correct answers for each part. Explain your answers very briefly.

(a) Without solving the characteristic equation, which of the following can **not** be eigenvalues of the matrix

$$\begin{bmatrix} 1 & 0 & 2i \\ 0 & 1 & 0 \\ -2i & 0 & 1 \end{bmatrix} ?$$
(2)

A. 3 B. 1 + 2i C. -1 D. 0

- (b) The stationary states of an electron in the Coulomb potential can be described either by quantum numbers $|n, \ell, m, s, m_s\rangle$ or quantum numbers $|n, j, m_j, \ell, s\rangle$, and the energy depends only on n. Which of the following are true?
 - A. The Hamiltonian commutes with the spin operator \vec{S}^2
 - B. The linear superposition $(|n, \ell = 1, m = 0, s, m_s) + |n, \ell = 0, m = 0, s, m_s)/\sqrt{2}$ is an energy eigenstate for any allowed n, s, m_s .
 - C. The total z angular momentum operator J_z commutes with the total orbital angular momentum operator \vec{L}^2
- (c) Which of the following equals the Hadamard operator \mathbb{H} ? A. $|1\rangle\langle 0| + |0\rangle\langle 1|$ B. $|0\rangle\langle 0| - |1\rangle\langle 1|$ C. $|+\rangle\langle +|+|-\rangle\langle -|$ D. $|+\rangle\langle 0|+|-\rangle\langle 1|$
- (d) If I state that whether Schrödinger's cat lives or dies is predetermined by secret physics of the radioactive nucleus before I close it into the box, what type of theory of quantum mechanics am I expressing?
 - A. Hidden Variables Theory B. Copenhagen Interpretation C. Many Worlds Theory D. Bell's Theory