PHYS-3202 Homework 2 Due 23 Sept 2020

This homework is due to https://uwcloud.uwinnipeg.ca/s/LLijRqSDKdXgMDA by 10:59PM on the due date. You may submit a Word doc/docx document (with an equation editor for mathematics) or a PDF (typed or black-and-white scanned).

1. Turbulent Air Resistance

Consider an object falling in a uniform gravitational acceleration g against a drag force of magnitude λv^2 . In this problem, you will want to recall the hyperbolic trig functions and the relationships $\cosh^2 \theta - \sinh^2 \theta = 1$, $d \cosh \theta / d\theta = \sinh \theta$, and $d \sinh \theta / d\theta = \cosh \theta$.

(a) Show that the speed of the object as a function of time is

$$v(t) = \sqrt{\frac{mg}{\lambda}} \tanh\left(\sqrt{\frac{\lambda g}{m}} t\right) , \qquad (1)$$

where m is the object's mass. Assume that v = 0 at t = 0. Does this formula agree with the terminal velocity from the lecture notes? *Hint:* You can directly integrate Newton's 2nd law.

(b) Now find the distance traveled as a function of time. Check that your answer has the correct units.

2. Bouncing Ball inspired by Kibble & Berkshire 2.28

A ball is released from rest at height h and bounces off the floor with coefficient of restitution e for each bounce. Treat its motion as entirely one-dimensional.

(a) Show that the ball comes to rest on the floor at time

$$t = \frac{1+e}{1-e}\sqrt{\frac{2h}{g}} \tag{2}$$

(including the time before the first bounce).

(b) Find the total distance that the ball travels including the distance before the first bounce.

3. Sample Inelastic Collision

Two carts of mass m_1 and m_2 initially move at velocities u_1 and u_2 along a frictionless linear track. The carts collide with coefficient of restitution e. Find the final velocities v_1 and v_2 (with sign). If $u_2 = 0$ and $v_1 = fu_1$ (where -1 < f < 1), what is v_2 ?

4. Rocket Science

Consider a rocket of initial velocity v_0 and initial total mass (including fuel) m_0 moving linearly in outer space. Recall from class that its velocity at a later time t is $v = v_0 + u \ln(m_0/m)$, where u is the exhaust speed relative to the rocket and m is the mass at time t.

- (a) from Thornton & Marion What is the ratio m/m_0 when the momentum of the rocket is maximized? *Hint:* Remember that the mass of the rocket is changing as it burns and exhausts fuel.
- (b) from Cline 2.10 Assume the rocket exhausts fuel at a constant rate $\dot{m} = -k$ (until the fuel runs out). Find the displacement as a function of time.
- (c) Finally, assuming that the relative exhaust speed u is constant, what is the mass of the rocket as a function of time if its acceleration a is constant?