PHYS-3202 Homework 11 NOT DUE

This homework is for your study purposes only and is not to be turned in. These are a bit more involved than you should expect on the exam but illustrate the concepts.

1. Air Friction from Fowles & Cassiday

Consider a disc-shaped symmetric object with $I_1 = I_2 \equiv I < I_3$, which is appropriate for a flat cylinder. While spinning in the air, it experiences a drag-like torque $\vec{\tau} = -k\vec{\omega}$ known as air friction. The disc initially has angular velocity with $\omega_3 \gg \omega_1, \omega_2$ in terms of the components along the principal axes. *Hint:* this type of torque is one that can be analyzed easily using Euler's equations.

- (a) Show that the angular velocity around the symmetry axis \hat{e}_3 decreases exponentially in time.
- (b) Next, show that the angle between $\vec{\omega}$ and the symmetry axis decreases in time. That is, $(\omega_1^2 + \omega_2^2)^{1/2}$ decreases more rapidly in time than ω_3 .
- (c) Finally, argue that $\vec{\omega}$ goes to a fixed angle in the \hat{e}_1, \hat{e}_2 plane as $t \to \infty$. You may use your solution to the previous part.

2. Wobbling Space Station inspired by Fowles & Cassiday

A space station in the form of a uniform ring of radius R, negligible thickness and height, and mass M is initially rotating around its symmetry axis \hat{e}_3 with angular velocity ω_0 ($\vec{\omega} = \omega_0 \hat{e}_3$). Its principal moments are $I \equiv I_1 = I_2 = MR^2/2$, $I_3 = MR^2$.

- (a) A meteoroid strikes the space station at its edge, imparting a momentum of magnitude p parallel to the symmetry axis. What are the frequency and amplitude of the precession of $\vec{\omega}$ around the symmetry axis after the collision? (This is what residents of the space station feel as oscillations in the "artificial gravity.")
- (b) To try to fix the problem, the space station turns on thrusters at the edges of the space station on the $\pm \hat{e}_2$ axes that produce a constant thrust F/2 each in the $\pm \hat{e}_3$ direction. Show that turning on the thrusters with force $F = p\omega_0/2$ when $\omega_1 = 0, \omega_2 > 0$ and leaving them on for a time $t = \pi/\omega_0$ will stop the precession of the station.

Hint: In both parts, you will have a pair of differential equations in 2 variables. Differentiate one and eliminate a variable to find a solution.