PHYS-3202 Homework 1 Due 16 Sept 2020

This homework is due to https://uwcloud.uwinnipeg.ca/s/LLijRqSDKdXgMDA by 10:59PM on the due date. You may submit a Word doc/docx document (with an equation editor for mathematics) or a PDF (typed or black-and-white scanned).

1. "Composite" Object based on a problem by Kibble & Berkshire

Consider three particles interacting with each other but with no external forces. The particles have masses m_1, m_2, m_3 respectively. Suppose we pretend that particles 2 and 3 are a single particle A of mass $M = m_2 + m_3$. We define the force on A from 1 as the sum of the forces on 2 and 3 from 1.

- (a) In the case that $m_2 = m_3 \equiv m$, show that the equations of motion (ie, Newton's 2nd law) for particles 1 and A can be written as Newton's 2nd law for those particles with particle A at the average location of the particles 2 and 3 ($\vec{r}_A = (\vec{r}_2 + \vec{r}_3)/2$).
- (b) Now suppose that $m_2 \neq m_3$. What must be the location of the imaginary particle A if we still have $M\vec{a}_A = \vec{F}_{A1}$?

2. Force From Velocity inspired by Fowles & Cassiday

An object of mass m moves in one dimension with velocity given by $v = \alpha/x$ for α a positive constant. Find the force on the object as a function of position and the position as a function of time. To find the force, you may use either Newton's 2nd law or energy conservation. Assume that the object is initially at the origin.

3. Planck Units general physics; see also Idema 1.2

The speed of light c, Newton's constant G, and (the reduced) Planck's constant \hbar are all usually considered constants of nature.

- (a) List the dimensions of the three physical constants c, G, \hbar . You may start from any formula you know involving them.
- (b) Find a combination l_P of c, G, \hbar with units of length; this is the "Planck length." Give the value of l_P in meters (to 2 significant digits). (You can find the physical constants in appendix B of Idema.)
- (c) Because they are dimensionful, we can work in units where $c = G = \hbar = 1$ and therefore $l_P = 1$. These are called Planck units. Can you think of any other physical constants that you can set equal to 1 in Planck units?

4. Yield of Explosion from the 2018 CAP Lloyd G. Elliott University Prize Exam

An explosion releases an energy E into the atmosphere at time t = 0. Use dimensional analysis to find the radius R of the resulting fireball as a function of time t. Relevant information is E and atmospheric density ρ . Note that the air pressure is related to ρ by the ideal gas law, so it is not a separate variable. (The formula you will find is valid at early times after the explosion.)