PHYS-4602 Homework 7 Due 15 March 2021

This homework is due to https://uwcloud.uwinnipeg.ca/s/ptx3smosp2xFtmE by 10:59PM on the due date. You may submit a PDF either scanned from handwriting or generated with IAT_EX or a word processor (with an equation editor).

1. Stark Effect based on Griffiths 6.36

The presence of an external electric field $E_0 \hat{z}$ shifts the energy levels of a hydrogen atom, which is called the Stark effect. Consider the hydrogen atom to be described by the Coulomb potential; the external electric field introduces a perturbation

$$H_1 = eE_0 z = eE_0 r \cos\theta . \tag{1}$$

We have already seen on homework that the expectation value of this Hamiltonian in the ground state n = 1 vanishes, so there is no shift in the ground state energy. In this problem, we consider the degenerate perturbation theory of the n = 2 states. As spin does not enter, do not consider it in this problem.

(a) The four states $|2,0,0\rangle$, $|2,1,0\rangle$, and $|2,1,\pm1\rangle$ are degenerate at 0th order. Label these states sequentially as i = 1, 2, 3, 4. Show that the matrix elements $W_{ij} = \langle i|H_1|j\rangle$ form the matrix

where empty elements are zero and a is the Bohr radius. *Hint*: Note that L_z commutes with H_1 , so only states with the same quantum number m can have nonzero matrix elements; this will save you quite a bit of work. Then use the angular wavefunctions to see that all the diagonal elements of W must vanish. Finally, use the explicit wavefunctions to evaluate the remaining matrix elements of W (there should only be one independent one left).

(b) Diagonalize this matrix to show that $|\pm\rangle = (1/\sqrt{2})(|2,0,0\rangle \pm |2,1,0\rangle)$ are eigenstates of W. Find the first order shift in energies of $|\pm\rangle$. *Hint*: Note that the corrected eigenstates may still have contributions from other values of the principal quantum numbers n, but that doesn't matter for this purpose.

2. Matrix Perturbation Theory

Consider the matrix Hamiltonian

$$H \simeq \begin{bmatrix} E_1 & \epsilon \\ \epsilon & E_2 \end{bmatrix} \tag{3}$$

with $E_1 \neq E_2$ except when you are told otherwise. Assume that $\epsilon \ll E_1, E_2$.

- (a) To first order in perturbation theory, find the energy eigenvalues and eigenstates.
- (b) What is the first order correction to the energy if $E_1 = E_2 = E$?
- (c) Find the energy eigenvalues to second order in perturbation theory.
- (d) Find the energy eigenvalues and eigenstates exactly. Then expand them as a power series in ϵ and compare to your perturbative answers from parts (a,c). In the case that $E_1 = E_2 = E$, how does your answer compare to part (b)?

3. Localized Magnetic Field

Two electrons are localized at well-separated lattice sites, so they can be treated as distinguishable particles. The two electrons interact with each other, and only the first electron experiences a magnetic field. The Hamiltonian is $H = A\vec{S}_1 \cdot \vec{S}_2 + BS_{1,z}$, where \vec{S}_j is the spin of electron j and A, B are constants. (The B term represents the magnetic field on the first electron.)

- (a) Assume that there is no magnetic field, so B = 0. Find the energy eigenstates and eigenvalues. Which eigenstate is the ground state assuming A > 0?
- (b) Assume that the magnetic field on electron 1 is small $(B \ll \hbar A)$ and find the ground state and ground state energy to first order in *B*. *Hint:* make sure you can write your eigenstates from the previous part in terms of the individual spins.