PHYS-4602 Homework 6 Due 8 March 2021

This homework is due to https://uwcloud.uwinnipeg.ca/s/ptx3smosp2xFtmE by 10:59PM on the due date. You may submit a PDF either scanned from handwriting or generated with IAT_EX or a word processor (with an equation editor).

Note: The first three questions are samples taken from last year's mid-term test and are meant to help you see the style of question I tend to ask on tests. The remaining problems are regular homework.

1. Previous Mid-Term Question #1

Is each of the following pairs entangled? Answer yes or no and explain very briefly.

- (a) The spins of an electron and positron in a total spin s = 0 state, as we discussed for the EPR experiment.
- (b) Two electrons in an atom in the total angular momentum $|2,0\rangle$ state, which is written as $|2,1\rangle = (|1,1\rangle_1|1,0\rangle_2 + |1,0\rangle_1|1,1\rangle_2)/\sqrt{2}$ in terms of the individual electron orbital angular momenta.
- (c) Two qubits, initially in state $|0\rangle|0\rangle$, after application of the Hadamard gate on each qubit followed by the CNOT gate.

2. Previous Mid-Term Question #2

Suppose someone hands you a qubit and tells you it is 50% likely to be in either of the states $|\pm\rangle = (|0\rangle \pm |1\rangle)/\sqrt{2}$. What is your density operator for this qubit? Show that it is the same as if the other person told you the qubit was 50% likely to be in either state $|0\rangle$ or $|1\rangle$.

3. Previous Mid-Term Question #3

Find the matrix element $\langle n'|(xp+px)|n\rangle$ for a harmonic oscillator. Use your result to write xp+px as a 3×3 matrix for the n, n' = 0, 1, 2 states of the oscillator.

4. Momentum Differentiates the Position Operator

Use the rule that $[A, B^n] = n[A, B]B^{n-1}$ when [A, B] commutes with B to prove that $[p, f(x)] = -i\hbar df/dx$, where x and p are 1D position and momentum operators with $[p, x] = -i\hbar$. Assume f(x) can be written as a Taylor series. (Please refer to homework assignment #1 problem 4.)

5. Gaussian Wavepacket

Here we consider the Gaussian wavepacket in 1D at a single instant t = 0, ignoring its time evolution. The state is

$$|\psi\rangle = \int_{-\infty}^{\infty} dx \; A e^{-ax^2} |x\rangle \;. \tag{1}$$

Some of these results may be useful on future assignments.

- (a) Find the normalization constant A. *Hint:* To integrate a Gaussian, consider its square. When you square it, change the dummy integration variable to y, then change the integral over dxdy to plane polar coordinates. The textbook cover also has a formula for Gaussian integrals.
- (b) Since the wavefunction is even, $\langle x \rangle = 0$. Find $\langle x^2 \rangle$. *Hint:* You can get a factor of x^2 next to the Gaussian by differentiating it with respect to the parameter a.

- (c) Write $|\psi\rangle$ in the momentum basis. *Hint:* If you have a quantity $ax^2 + bx$ somewhere, you may find it useful to write it as $a(x+b/2a)^2 b^2/4a$ by completing the square. Then shift integration variables so it looks like you have a Gaussian again.
- (d) Find $\langle p \rangle$ and $\langle p^2 \rangle$ and show that this state saturates the Heisenberg uncertainty principle. You should not have to do any integrations.

6. Harmonic Oscillator Matrix Elements

Calculate the matrix elements $\langle n|x|n'\rangle$ and $\langle n|p^2|n'\rangle$ for $|n\rangle, |n'\rangle$ stationary states of the harmonic oscillator. You *must* use Dirac and operator notation and *may not* carry out any integrals.