PHYS-4602 Homework 4 Due 8 Feb 2021

This homework is due to <https://uwcloud.uwinnipeg.ca/s/ptx3smosp2xFtmE> by 10:59PM on the due date. You may submit a PDF either scanned from handwriting or generated with LATEX or a word processor (with an equation editor).

1. 1-Qubit von Neumann Entropy

On the previous assignment, we saw that the general density matrix of a single qubit is

$$
\rho = \frac{1}{2} \left(1 + \vec{a} \cdot \sigma \right) = \frac{1}{2} \left[\begin{array}{cc} 1 + a_3 & a_1 - ia_2 \\ a_1 + ia_2 & 1 - a_3 \end{array} \right] , \tag{1}
$$

where $\vec{a} = (a_1, a_2, a_3)$ is a vector describing the mixed state for $\vec{a}^2 < 1$ (and σ are the Pauli matrices). Find the von Neumann entropy of this general density matrix. *Hint*: start by finding the eigenvalues.

2. Entropy Inequalities and Geometry

Recent developments in quantum gravity have tried to link quantities from quantum information theory, like von Neumann entropy, to geometry. In this question we will consider a toy model for the entropy in terms of geometry and see if it is allowed by the properties of the entropy.

To start, imagine a system with various pieces $1,2,\cdots$. Associate the reduced density matrix ρ_i of each part with a vector \vec{x}_i and the entropy with the vector length $S(\rho_i) = |\vec{x}_i|$. Finally, the density matrix of two parts of the system put together is associated with the sum of the two corresponding vectors: $\rho_{i,j} \to \vec{x}_i + \vec{x}_j$, so $S(\rho_{i,j}) = |\vec{x}_i + \vec{x}_j|$. We do not put any restrictions on the vectors \vec{x}_i .

- (a) Show that this formula for the entropy satisfies both the Araki-Lieb inequality and the subadditivity property for a system with two parts.
- (b) On the other hand, suppose the system has three parts and find a counterexample to show that our prescription for the entropy does not satisfy strong subadditivity, so it cannot be valid (unless additional restrictions are imposed on the vectors \vec{x}_i).

3. 2-Qubit Gates

Consider a 2 qubit system. Choose a basis for the 2 qubit Hilbert space and use it for all parts of this problem.

- (a) Write the CNOT gate operator as a matrix in that basis and show that it is unitary.
- (b) Consider the 1 qubit gate NOT acting only on the first qubit of our two. Write this gate (call it $NOT₁$) as a matrix in your 2-qubit basis.

4. Square Root of NOT

In quantum computing, the NOT gate reverses $|0\rangle$ and $|1\rangle$ qbits. In the standard matrix form, NOT is represented by the Pauli matrix σ_x .

(a) Show that the operator U given by the matrix

$$
U \simeq \frac{1}{2} \left[\begin{array}{ccc} 1-i & 1+i \\ 1+i & 1-i \end{array} \right] \tag{2}
$$

is the "square root" of NOT in the sense that $U^2 \simeq \sigma_x$ and also demonstrate that U is unitary $(U^{\dagger}U=1)$.

- (b) Consider the matrix $e^{-i\theta} \exp(i\theta \sigma_x)$. Show that this is U for $\theta = \pi/4$ and NOT for $\theta = \pi/2$, also demonstrating that U is the square root of NOT.
- (c) Find the operator $e^{i\pi/4}U$ in terms of the phase rotation gate $R(\phi)$ and the Hadamard gate H. You will need to choose a particular value for the phase ϕ .