PHYS-4602 Homework 3 Due 1 Feb 2020

This homework is due to https://uwcloud.uwinnipeg.ca/s/ptx3smosp2xFtmE by 10:59PM on the due date. You may submit a PDF either scanned from handwriting or generated with IAT_EX or a word processor (with an equation editor).

1. 1-Qbit Density Matrix inspiration from Griffiths & Schroeter 12.6 & 12.8

Consider the density matrix ρ for a single qbit (you may consider this to be the spin of a single spin-1/2 particle instead). In this problem, describe ρ as a matrix rather than an abstract operator.

- (a) Prove that $\rho^2 = \rho$ if and only if the state is pure. *Hint:* Think about the diagonal form of ρ in pure and mixed states.
- (b) Using the requirements that $tr(\rho) = 1$ and $\rho^{\dagger} = \rho$, show that the most general density matrix for a single qbit is

$$\rho = \frac{1}{2} \begin{bmatrix} (1+a_3) & (a_1 - ia_2) \\ (a_1 + ia_2) & (1-a_3) \end{bmatrix} , \qquad (1)$$

where $a_{1,2,3}$ are real numbers. (This can also be written in terms of the Pauli sigma matrices as $(1 + \vec{a} \cdot \vec{\sigma})/2$.)

- (c) Define the Bloch vector \vec{a} as the vector with components $a_{1,2,3}$. Use part (a) to show that ρ represents a pure state if $|\vec{a}| = 1$ and a mixed state if $|\vec{a}| < 1$ (that is, the Bloch vector lies on the surface of the Bloch sphere for a pure state and inside the Bloch sphere for a mixed state).
- (d) If the state is a pure state $|\psi\rangle = \cos\theta|0\rangle + e^{i\phi}\sin\theta|1\rangle$, show that \vec{a} is a unit vector with polar angle 2θ and azimuthal angle ϕ (that is, $\vec{a} = [\cos\phi\sin(2\theta), \sin\phi\sin(2\theta), \cos(2\theta)]^T$).

2. Traces of Operators

Use Dirac bra/ket notation and the completeness relation for an orthonormal basis to prove the following (you may assume that the Hilbert space is finite-dimensional):

- (a) tr(AB) = tr(BA) for any two operators A, B
- (b) The expectation value $\langle A \rangle = tr(A\rho)$ for any observable A in a mixed state with density operator ρ

3. Total Spin and Mixed States

Consider a system composed of two spins of s = 1 combined into a total spin 2 state

$$|s=2, m=0\rangle = \frac{1}{\sqrt{6}}|1,1\rangle_1|1,-1\rangle_2 + \sqrt{\frac{2}{3}}|1,0\rangle_1|1,0\rangle_2 + \frac{1}{\sqrt{6}}|1,-1\rangle_1|1,1\rangle_2 .$$
(2)

Write the reduced density operator for the first spin after the partial trace of the second spin. Is this a mixed state? Is it maximally mixed?

4. Thermal State

The density matrix for a quantum system in thermal equilibrium at temperature T is

$$\rho = e^{-H/k_B T}/Z$$
 where $Z \equiv \operatorname{tr}\left(e^{-H/k_B T}\right)$ (3)

is the partition function, H is the Hamiltonian, and k_B is the Boltzmann constant.

(a) First, show that the partition function is

$$Z = \sum_{n} e^{-E_n/k_B T} , \qquad (4)$$

where the E_n are the energy eigenvalues.

(b) Show that another expression for the density operator is

$$\rho = \frac{1}{Z} \sum_{n} e^{-E_n/k_B T} |E_n\rangle \langle E_n| , \qquad (5)$$

where $|E_n\rangle$ are the energy eigenvectors.

(c) Show that the so-called thermofield double state

$$|\psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-E_n/2k_B T} |E_n\rangle_1 |E_n\rangle_2 , \qquad (6)$$

where 1, 2 indicate two copies of the quantum system, is a purification of the thermal state by showing that the partial trace of $|\psi\rangle\langle\psi|$ over system 2 is ρ .

5. 3-Particle States from some Griffiths problems

Consider three particles, each of which is in one of the single-particle states $|\alpha\rangle$, $|\beta\rangle$, or $|\gamma\rangle$, which are orthonormal.

- (a) If the particles are bosons, write down the state where one particle is in each of $|\alpha\rangle$, $|\beta\rangle$, and $|\gamma\rangle$. *Hint*: This state must be symmetric under the exchange of *any* pair of the bosons.
- (b) Write down all possible 3-particle states (including normalization) with two particles in the same 1-particle state and the third particle in a different 1-particle state, still in the case that the particles are indistinguishable bosons.
- (c) How many linearly independent states can you form if the particles are fermions? Write down all the possible linearly independent states. *Hint*: Similarly to the above, these states must be antisymmetric under the exhange of *any* pair of the fermions.