PHYS-4602 Homework 8 Due 19 March 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Perturbation Theory vs Variational Principle

(a) Consider a particle moving in the 1D anharmonic oscillator potential

$$V(x) = \frac{1}{2}m\omega^2 x^2 + gx^3 \tag{1}$$

On the previous assignment, you found that the ground state energy remained $E_{gs} = \hbar \omega/2$ through first order in perturbation theory.

Using the variational method, show that the true ground state energy of this potential is unbounded below (that is, if I give you any real number, demonstrate that the ground state energy is less than that number). We say that this potential is unstable and has no ground state. *Hint*: Think about a simple trial wavefunction that approximates a delta function in position.

(b) from Griffiths 7.5 Consider a Hamiltonian $H = H_0 + H_1$, where H_0 is exactly solvable and H_1 is small in some sense. Prove that first-order perturbation theory always overestimates the true ground state energy. That is, show that the ground state energy calculated in first-order perturbation theory is greater than (or equal to) the true ground state energy.

2. Variational Calculations

- (a) Consider a particle moving in 1D in a potential $V(x) = \alpha |x|$. Find the best possible upper bound on the ground state energy using a gaussian trial wavefunction.
- (b) Consider a particle moving in the 1D interval $0 \le x < L$ with periodic boundary conditions on the wavefunction $\psi(0) = \psi(L)$. The particle experiences a potential V(x). Show that the ground state energy of this system is less than or equal to the average value of V(x) over the range $0 \le x < L$.

3. WKB as \hbar Expansion Based on Griffiths 8.2

In this problem, you'll derive the WKB wavefunction in regions where E > V(x). We will use the 1D Schrödinger equation in the form

$$\frac{d^2\psi}{dx^2} = -\frac{p(x)^2}{\hbar^2}\psi \ , \quad p(x) = \sqrt{2m(E - V(x))} \ . \tag{2}$$

- (a) Begin by writing the wavefunction as $\psi(x) = \exp[if(x)/\hbar]$ for some complex function f (note that this is completely general). Use the Schrödinger equation (2) to find a second order differential equation for f.
- (b) Now treat \hbar as a small parameter, expanding $f(x) = f_0(x) + \hbar f_1(x) + \dots = \sum_n \hbar^n f_n(x)$. Then write your differential equation from part (a) as a series in \hbar . Find the differential equations that come from the \hbar^0 , \hbar^1 , and \hbar^2 terms; these should vanish separately as $\hbar \to 0$
- (c) Find f_0 and f_1 in terms of p(x), and use those to derive the WKB form of the wavefunction. Hint: Recall that $\ln z = \ln |z| + i\theta$, where the complex $z = |z|e^{i\theta}$.
- (d) Describe how you would change this procedure for regions where V(x) > E.