PHYS-4602 Homework 5 Due 27 Feb 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Dirac Notation on the Circle

Consider the Hilbert space of L^2 functions on the interval $0 \le x \le 2\pi R$ with periodic boundary conditions.

(a) Show explicitly that the complex exponentials $|e_n\rangle \simeq e^{inx/R}/\sqrt{2\pi R}$ for n any integer form an orthonormal set (as we stated in class). As it turns out, they make a complete orthonormal basis (but you do not have to prove that).

Carry out the following calculations without doing any integrals.

- (b) Calculate the inner product of $|f\rangle \simeq f(x) = \cos^3(x/R)$ and $|g\rangle \simeq g(x) = \sin(3x/R)$.
- (c) Find the inner product of $|f\rangle$ and $|g\rangle$ from part (b) with $|h\rangle \simeq h(x) = \sin(3x/R + \theta)$.
- (d) $|f\rangle, |g\rangle, |h\rangle$ are not normalized. Find their norms.

2. Gaussian Wavepacket

Here we consider the Gaussian wavepacket in 1D at a single instant t = 0, ignoring its time evolution. The state is

$$|\psi\rangle = \int_{-\infty}^{\infty} dx \ Ae^{-ax^2} |x\rangle \ . \tag{1}$$

Some of these results may be useful on future assignments.

- (a) Find the normalization constant A. Hint: To integrate a Gaussian, consider its square. When you square it, change the dummy integration variable to y, then change the integral over dxdy to plane polar coordinates. The textbook cover also has a formula for Gaussian integrals.
- (b) Since the wavefunction is even, $\langle x \rangle = 0$. Find $\langle x^2 \rangle$. Hint: You can get a factor of x^2 next to the Gaussian by differentiating it with respect to the parameter a.
- (c) Write $|\psi\rangle$ in the momentum basis. *Hint*: If you have a quantity $ax^2 + bx$ somewhere, you may find it useful to write it as $a(x+b/2a)^2 b^2/4a$ by completing the square. Then shift integration variables so it looks like you have a Gaussian again.
- (d) Find $\langle p \rangle$ and $\langle p^2 \rangle$ and show that this state saturates the Heisenberg uncertainty principle. You should not have to do any integrations.

3. Harmonic Oscillator Matrix Elements

- (a) Calculate the matrix elements $\langle n|x|n'\rangle$ and $\langle n|p^2|n'\rangle$ for $|n\rangle, |n'\rangle$ stationary states of the harmonic oscillator. You *must* use Dirac and operator notation and *may not* carry out any integrals.
- (b) Suppose the system is in the state $|\psi\rangle = (|0\rangle + 2e^{i\theta}|1\rangle)/\sqrt{5}$. Using your previous result, find $\langle x \rangle$ as a function of θ and explain the relation of your answer to the time evolution of a particle initially in that state with $\theta = 0$.

(c) from a Griffiths problem A coherent state $|\alpha\rangle$ of a harmonic oscillator is an eigenstate of the lowering operator

$$a|\alpha\rangle = \alpha|\alpha\rangle$$
, (2)

where the eigenvalue α is complex in general ($a \neq a^{\dagger}$ is not Hermitian). Find the expectation values of x and p in the coherent state $|\alpha\rangle$.

4. Former Test Question 1

Two Hermitian operators A and B have simultaneous eigenstates denoted $|a,b\rangle$, where a is the eigenvalue of A and b is the eigenvalue of B. Answer the following questions as True or False. Explain your reasoning in one sentence per part.

- (a) The state $(|a_1,b\rangle + |a_2,b\rangle)/\sqrt{2}$ with $a_1 \neq a_2$ is an eigenstate of A.
- (b) The state $(|a_1,b\rangle + |a_2,b\rangle)/\sqrt{2}$ with $a_1 \neq a_2$ is an eigenstate of B.
- (c) The vector $(|a_1,b\rangle + 4|a_2,b\rangle)/3$ is correctly normalized.

5. Former Test Question 2

Some operator Q commutes with the Hamiltonian. If the initial state $|\Psi(t=0)\rangle$ of the system is an eigenstate of Q with eigenvalue q, prove that $|\Psi(t)\rangle$ is also an eigenstate of Q with the same eigenvalue for any time t.

6. Former Test Question 3

Answer the following about 1-qbit and 2-qbit gates.

- (a) Show that acting with \mathbb{H} , then $R(\pi)$, then \mathbb{H} again reproduces the *NOT* gate (meaning *NOT* is not an independent gate).
- (b) It is not possible to clone a qbit, but is it possible for a unitary gate $(U^{\dagger} = U^{-1})$ to swap two qbits? That is, does there exist U such that $U(|\psi\rangle_1|\phi\rangle_2) = |\phi\rangle_1|\psi\rangle_2$ for two unknown qbits? *Hint*: choose a basis for the 2-qbit Hilbert space and write U as a matrix.