PHYS-4602 Homework 1 Due 16 Jan 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Dual Vectors and Change of Basis

Consider a 3-dimensional complex column vector space, which has the usual orthonormal basis

$$|e_1\rangle \simeq \begin{bmatrix} 1\\0\\0 \end{bmatrix} , |e_2\rangle \simeq \begin{bmatrix} 0\\1\\0 \end{bmatrix} , |e_3\rangle \simeq \begin{bmatrix} 0\\0\\1 \end{bmatrix} .$$
 (1)

In that basis, the vectors $|f_i\rangle$ (i=1,2,3) can be written as

$$|f_1\rangle \simeq \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix} , |f_2\rangle \simeq \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} , |f_3\rangle \simeq \frac{1}{\sqrt{6}} \begin{bmatrix} i\\-i\\-2i \end{bmatrix} .$$
 (2)

- (a) Write the $|f_i\rangle$ as linear superpositions of the $|e_i\rangle$ basis vectors.
- (b) Show that the $|f_i\rangle$ are normalized and mutually orthogonal, so they form a complete orthonormal basis (distinct from the set of $|e_i\rangle$).
- (c) Write the associated dual vectors $\langle f_i |$ as row vectors in the $\{\langle e_i |\}$ basis.
- (d) Write the $|e_i\rangle$ vectors as linear superpositions of the $|f_i\rangle$. Use your result to do a change of basis for this Hilbert space by writing the $|e_i\rangle$ vectors as column vectors in the $\{|f_i\rangle\}$ basis. *Hint:* You can solve a system of linear equations or use a similarity transformation, but it is much easier if you use inner products as discussed in the notes.

2. Superposition of States

Suppose $|\psi\rangle$ and $|\phi\rangle$ are two normalized state vectors, and so is $|\alpha\rangle = A(3|\psi\rangle + 4|\phi\rangle$).

- (a) Find the normalization constant A in the case that
 - i. $\langle \psi | \phi \rangle = 0$.
 - ii. $\langle \psi | \phi \rangle = i$.
 - iii. $\langle \psi | \phi \rangle = e^{i\pi/6}$.
- (b) In the case $\langle \psi | \phi \rangle = i$, find the part of $| \alpha \rangle$ orthogonal to $| \psi \rangle$. Verify that it is orthogonal by taking the inner product. You may use the *Gram-Schmidt procedure* described in Griffiths problem A.4 to
- (c) Now suppose that $\langle \psi | \phi \rangle = 0$ and define a new state $|\beta\rangle = B(4e^{-i\theta}|\psi\rangle + 3e^{i\theta}|\phi\rangle$) for some angle θ . Find the normalization constant B and $\langle \alpha | \beta \rangle$ (you make assume that the normalization constants are positive and real).

3. 1-Qbit Density Matrix inspiration from Griffiths & Schroeter 12.6 & 12.8

Consider the density matrix ρ for a single qbit (you may consider this to be the spin of a single spin-1/2 particle instead). In this problem, describe ρ as a matrix rather than an abstract operator.

(a) Prove that $\rho^2 = \rho$ if and only if the state is pure. *Hint:* Think about the diagonal form of ρ in pure and mixed states.

(b) Using the requirements that $Tr(\rho) = 1$ and $\rho^{\dagger} = \rho$, show that the most general density matrix for a single qbit is

$$\rho = \frac{1}{2} \begin{bmatrix} (1+a_3) & (a_1 - ia_2) \\ (a_1 + ia_2) & (1-a_3) \end{bmatrix} , \qquad (3)$$

where $a_{1,2,3}$ are real numbers. (This can also be written in terms of the Pauli sigma matrices as $(1 + \vec{a} \cdot \vec{\sigma})/2$.)

- (c) Define the Bloch vector \vec{a} as the vector with components $a_{1,2,3}$. Use part (a) to show that ρ represents a pure state if $|\vec{a}| = 1$ and a mixed state if $|\vec{a}| < 1$ (that is, the Bloch vector lies on the surface of the Bloch sphere for a pure state and inside the Bloch sphere for a mixed state).
- (d) Find the quantum von Neumann entropy for $a_1 = 1/2$, $a_2 = 0$, and $a_3 = 0$. *Hint:* you may want to diagonalize ρ first.