PHYS-3203 Homework 5 Due 12 Feb 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Weak Coupling as Forcing

Consider two objects, each of mass m, attached to springs of spring constants k_1 and k_2 respectively (these springs are also attached to facing walls). The objects are attached to each other by a third spring of constant \bar{k} , as described in the example from the lecture notes. The EOM are

$$m\ddot{x}_1 + (k_1 + \bar{k})x_1 = \bar{k}x_2 , \qquad (1)$$

$$m\ddot{x}_2 + (k_2 + \bar{k})x_2 = \bar{k}x_1. (2)$$

Consider this system with initial conditions $x_1 = a, x_2 = 0, \dot{x}_1 = \dot{x}_2 = 0$. The solution in the $\bar{k} \to 0$ limit is $x_1 = a\cos(\omega_1 t), x_2 = 0$, where $\omega_{1,2} = \sqrt{k_{1,2}/m}$.

- (a) Now allow \bar{k} nonzero but $\bar{k} \ll k_1, k_2$. To a good approximation, the solution for x_1, x_2 must be similar to the $\bar{k} = 0$ solution. Therefore, we can assume that x_2 is negligible in equation (1) for x_1 , the only change to the solution for x_1 is a change in the frequency. Find ω_1 as an expansion in the small number \bar{k} to first order.
- (b) To find the solution for x_2 , consider x_1 to be a fixed function $x_1 = a\cos(\omega_1 t)$, so the right-hand side of (2) is an effective forcing term for x_2 . Find the solution for x_2 with this forcing, assuming $k_2 \neq k_1$. Do not yet add a transient solution to solve the initial conditions.
- (c) The solution from part (b) does not satisfy the initial condition $x_2 = 0$. Add a transient solution (ie, a solution with no forcing), so x_2 satisfies the initial conditions, still assuming $k_2 \neq k_1$. Show that the solution can be written as $x_2 = A \sin[(\omega_1 + \omega_2)t/2] \sin[(\omega_1 \omega_2)t/2]$ for some amplitude A. Since A is small, the energy in the x_2 oscillator remains small at all times.
- (d) Repeat part (b) with $k_2 = k_1$. Show that the solution is $x_2 = (\bar{k}a/2m\omega_1)t\sin(\omega_1t)$. How can you interpret this solution?

2. Hanging Springs based on KB 11.3

Two identical springs of spring constant k are both attached to the same object of mass m. The other end of the first spring is attached to a fixed support, while the other end of the second spring is attached to an object of the same mass m. When they are held horizontal, each spring has equilibrium length l. Consider instead orienting the springs so that the first hangs from the ceiling and the second hangs downward from the object in the middle. Define generalized coordinates for the masses such that $l+x_1$ is the length of the first spring and $l+x_2$ is the length of the second.

- (a) Write the potential energy of the system in terms of x_1, x_2 . Then find the equilibrium positions x_1^0, x_2^0 of the masses by minimizing the potential.
- (b) Now define generalized coordinates $y_{1,2}$ that are the displacements from the vertical equilibrium, ie, $x_{1,2} = x_{1,2}^0 + y_{1,2}$. Find the Lagrangian in terms of the $y_{1,2}$ coordinates.
- (c) Find normal modes and the frequencies of oscillation. Describe the motion for each normal mode in terms of the ratio y_2/y_1 . Use the generalized eigenvalue problem from the equations of motion.