PHYS-3203 Homework 3 Due 29 Jan 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Falling Ladder from KB 10.12

A straight ladder of length 2L leans against a wall — one end is on the floor y=0, and the other is on the wall x=0. Both the wall and floor are frictionless. The ladder is symmetric, so its center of mass is at a distance L from either end, and it has mass M and moment of inertia I around the axis perpendicular to the xy plane and through the center of mass.

- (a) Find the position of the center of mass as a function of the angle θ of the ladder from the horizontal, assuming the end of the ladder is still touching the wall. Then write a Lagrangian for the motion of the ladder, the Euler-Lagrange equation, and energy conservation equation in terms of the generalized coordinate θ . *Hint:* remember that the kinetic energy can be written as translational kinetic energy of the center of mass plus rotational kinetic energy around the center of mass.
- (b) Now write the Lagrangian for the system by implementing the relationship between the center of mass positions x, y and θ with Lagrange multipliers. Find the equations of motion.
- (c) If the ladder is initially at rest at some angle θ_0 , at what angle θ does it lose contact with the wall? Recall that the Lagrange multiplier gives the force of constraint. *Hint:* use the EOM for x re-written in terms of θ and then use the EOM and energy conservation you found in (a).

2. Spring on a Pulley from KB 12.4 and Taylor

A light string of length l_1 hangs over a light pulley. On one side of the string is a mass m from which is hung a light spring with another mass m on the other side of the spring. On the other side of the pulley, the string supports a mass 2m. The spring has spring constant k and equilibrium length l_2 (with mass m hanging from it).

- (a) Define x as the distance of the mass 2m from the pulley and y as the displacement of the spring from equilibrium (both increasing downward). Find the Hamiltonian in terms of x, y and their canonical momenta.
- (b) You should see that x is a cyclic coordinate. What does this fact represent?
- (c) Find Hamilton's equations. Solve for x(t), y(t) if the mass 2m is initially at rest and the spring is stretched a small amount from equilibrium and released from rest. How does the frequency of oscillation compare to what it would be if the spring were hung from a stationary support?