Intermediate Mechanics PHYS-3202 In-Class Test

Dr. Andrew Frey

24 Feb 2020

Instructions:

- Do not turn over until instructed.
- You will have 50 minutes to complete this test.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS REGARDING TEST LENGTH WILL GO HERE.
- Answer all questions briefly and completely.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Formulae:

- Lagrangian Mechanics
 - Action and Lagrangian

$$S = \int_{t_1}^{t_f} dt \, L(q, \dot{q}, t) \; , \; \; L = T - V$$

- Euler-Lagrange Equations

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0$$

- For constraint $f(q, \dot{q}, t) = 0$, add Lagrange multiplier term $\Delta L = \lambda f(q, \dot{q}, t)$
- Framework applies to other optimization problems
- Hamiltonian Mechanics
 - Canonical Momentum $p_i = \partial L/\partial \dot{q}_i$
 - Hamiltonian as Legendre transform

$$H(q,p) = \sum_{i} p_i \dot{q}_i - L(q,\dot{q})$$
 with $\dot{q}_i \equiv \dot{q}_i(q,p)$

- Hamilton's equations $\dot{q}_i = \partial H/\partial p_i$, $\dot{p}_i = -\partial H/\partial q_i$
- Transformation of F generated by G is $\delta F = \{F, G\}\delta\lambda$ with Poisson bracket

$$\{F,G\} \equiv \sum_{i} \left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}} - \frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}} \right)$$

- Time dependence $dF/dt = \partial F/\partial t + \{F, H\}$

- Generator from Noether's theorem $G = \sum_{i} (\partial L/\partial \dot{q}_{i}) \delta q_{i}$
- Liouville theorem $d\rho/dt=0$ along phase space trajectory for phase space density ρ
- Virial theorem $\langle T \rangle = -(1/2) \langle \sum \vec{F} \cdot \vec{x} \rangle = (n+1) \langle V \rangle / 2$ for $V \propto r^{n+1}$

• Coupled Harmonic Oscillators

- Lagrangian

$$L = \sum_{i,j} \left(\frac{1}{2} m_{ij} \dot{q}_i \dot{q}_j - \frac{1}{2} V_{ij} q_i q_j \right)$$

- Generalized eigenvector problem for normal modes $(V m\omega^2)B = 0$ B =normal mode vector, V, m =matrices from Lagrangian
- Normal coordinates $\ddot{\eta}_n + \omega_n^2 \eta_n = 0$, $L = (1/2) \sum_n (\dot{\eta}_n^2 \omega_n^2 \eta_n^2)$
- In forced case, determine forcing on each normal coordinate

• Waves on a String

- Normal modes of light string with uniformly spaced identical beads (ends fixed)

$$y_{j,n} = a \sin\left(\frac{jn\pi}{N+1}\right) , \quad \omega_n^2 = \frac{4F}{m\ell} \sin^2\left(\frac{n\pi}{2(N+1)}\right) , \quad n = 1, 2, \dots N$$

- Normal modes of massive string F =tension, μ =mass density, y(0,t) = y(L,t) = 0

$$y_n(x) = \sin\left(\frac{n\pi}{L}x\right) , \quad \omega_n = \frac{n\pi v}{L} , \quad v = \sqrt{F/\mu}$$

- Wave equation $\ddot{y} v^2 y''$
 - * Solution y = f(x + vt) + g(x vt)
 - * With Dirichlet b.c. at x = 0, L, g(u) = -f(-u), f(u+2L) = f(u)
 - * $y(x,0) = f_{-}(x), \dot{y}(x,0) = vf'_{+}(x), f_{\pm}(u) = f(u) \pm f(-u)$
- Phase velocity ω/k , group velocity $d\omega/dk$

• Velocities in Possible General Coordinates

- Cylindrical coordinates $x = \rho \cos \varphi, y = \rho \sin \varphi, z = z, \vec{v} = \dot{\rho} \hat{\rho} + \rho \dot{\varphi} \hat{\varphi} + \dot{z} \hat{z}$
- Spherical polar coordinates $x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta$ $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r \sin \theta \dot{\phi}\hat{\phi}$