PHYS-4601 Homework 8 Due 8 Nov 2018

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Oscillating Square Well

Consider an infinite square well with potential V(x) = 0 for -a < x < a, $V(x) = \infty$ otherwise. The system initially has wavefunction

$$\psi(x) = \frac{1}{2}\sqrt{\frac{3}{a}}\cos\left(\frac{\pi x}{2a}\right) - \frac{i}{2}\sqrt{\frac{1}{a}}\cos\left(\frac{5\pi x}{2a}\right) \tag{1}$$

for -a < x < a and $\psi(x) = 0$ otherwise.

- (a) If you measure the energy of the system, what possible energy values could you measure? And what are the probabilities of measuring them?
- (b) What is the probability density for finding the particle at position x = 2a/3 as a function of time?
- (c) At what times is the time-dependent wavefunction $\Psi(t, x)$ the opposite of the initial wavefunction, ie, when is $\Psi(t, x) = -\psi(x)$? (Note that this is physically equivalent to the initial wavefunction.)
- (d) In this part, suppose the system has different initial conditions

$$\psi(x) = \sqrt{\frac{3}{2a}} \left(1 - \frac{|x|}{a} \right) \tag{2}$$

for -a < x < a and $\psi(x) = 0$ otherwise. That is, the wavefunction increases linearly from $\psi = 0$ at x = -a to the origin, then decreases linearly to $\psi = 0$ at x = a in a symmetric fashion. Based on your answer to the previous part, at what times t does the time-dependent wavefunction $\Psi(t, x) = -\psi(x)$? *Hint:* All you need to know is that this is an even wavefunction and the properties of the even bound states.

2. Matrix Elements and Probabilities

- (a) Calculate the matrix elements $\langle n|x|n'\rangle$ and $\langle n|p^2|n'\rangle$ for $|n\rangle, |n'\rangle$ stationary states of the harmonic oscillator. You *must* use Dirac and operator notation and *may not* carry out any integrals. You may use $|m\rangle$ instead of $|n'\rangle$, but note that *m* here is a label, not the mass.
- (b) Suppose the system is in the state $|\psi\rangle = (|0\rangle + 2e^{i\theta}|1\rangle)/\sqrt{5}$. Using your previous result, find $\langle x \rangle$ as a function of θ and explain the relation of your answer to the time evolution of a particle initially in that state with $\theta = 0$.
- (c) Now find the probability density for finding a particle in state $|\psi\rangle$ at position x = 0 as a function of θ .

3. Wavefunctions and Ladder Operators

(a) from Griffiths 2.10 Griffiths uses the condition $a|0\rangle = 0$ to find the ground state wavefunction, then a^{\dagger} to find the first excited state wavefunction. Apply the raising operator a^{\dagger} to $|1\rangle$ to find the wavefunction $\langle x|2\rangle$ of the second excited state. (b) Prove that the Hermite polynomials satisfy the relationship

$$H_{n+1}(\xi) = 2\xi H_n(\xi) - 2nH_{n-1}(\xi) .$$
(3)

Hint: consider $\langle x|x|n \rangle$ for the harmonic oscillator written in two different ways and then translate that in terms of wavefunctions.