
PHYS-4601 Homework 7 Due 1 Nov 2018

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Numerical Determination of Energy Eigenvalue related to Griffiths 2.51

Consider the potential

V (x) = − h̄
2a2

m

1√
1 + a2x2

. (1)

Find the ground state energy using the numerical “wag the dog” method with Maple, as follows:

(a) Show that the Schrödinger equation for a bound state can be written in terms of dimen-
sionless variables as

d2ψ

dξ2
(ξ) +

(
2√

1 + ξ2
− κ2

)
ψ(ξ) = 0 , (2)

where κ is a positive constant.

(b) The ground state should be an even function, so if we ignore normalization, we can choose
initial conditions ψ(0) = 1, ψ′(0) = 0. Starting with κ2 = 2.0, enter the Schrödinger
equation and initial conditions into Maple and solve the ODE numerically over the range
ξ = 0− 10. Then plot the solution. You may find the following Maple code helpful (note
that we rename variables for ease of typing):

with(plots):

schr := diff(u(x),x$2)+(2/sqrt(1+x^2)-2.00)*u(x) = 0

init1 := u(0) = 1

init2 := (D(u))(0) = 0

psi := dsolve({init1, init2, schr}, numeric, range = 0 .. 10)

psiplot := odeplot(psi)

display(psiplot)

Attach a printout of your code with results. You should find a wavefunction with no nodes
that blows up at large ξ.

(c) By decreasing your chosen value of κ2 to 1.0, you should be able to get the “tail” of the
wavefunction to flip over. Since the correct wavefunction should go to zero at large ξ,
this means you have bracketed the correct eigenvalue for κ2. Choose successively closer
together values of κ2 to find the eigenvalue down to three decimal places. What’s the
ground state energy? Attach a plot of your approximate ground state wavefunction.

(d) Now find the first excited state, which should have exactly one node at x = 0. In other
words, take initial conditions ψ(0) = 0, ψ′(0) = 1 (ignoring normalization). Then for
x > 0, ψ(x) > 0 (going to zero at x→∞). Use the procedure above starting with κ2 = 1
to find the first excited state energy (to three decimal places) and attach a plot of the
wavefunction.

2. Scattering and the Probability Current

We define the probability current ~(~x, t) as

~(x, t) =
ih̄

2m

(
Ψ~∇Ψ∗ −Ψ∗~∇Ψ

)
(3)

(in 1D, replace the gradient with ∂Ψ/∂x).



(a) A conserved quantity Q (this could be electric charge or total probability in quantum
mechanics) with a density ρ and current ~ satisfies the continuity equation

∂ρ

∂t
= −~∇ · ~ . (4)

(This means that the change in probability within a region is equal to the net flow of
probability into that region.) Consider an infinite square well potential (V (x) = 0 for
−a < x < a, V (x) = ∞ for |x| > a). At time t = 0, the system is in state |Ψ(0)〉 =
(|1〉 + |2〉)/

√
2, where |1〉 is the ground state and |2〉 is the first excited state. Find the

Ψ(x, t), probability density ρ(x, t), and probability current j(x, t), and verify that they
obey the continuity equation.

(b) To understand reflection and transmission coefficients when the potential takes different
values on either side of the barrier, we should think about conservation of probability.
Specifically, write the wavefunction as Aeikx + Be−ikx to the far left and Ceik

′x to the
far right. Show first that the probability current on the far left splits into an incident
part (jinc ∝ |A|2) and a reflected part (jref ∝ |B|2) and evaluate jinc, jref . Then find
the transmitted probability current jtrans. Finally, find the reflection and transmission
coefficients R = jref/jinc, T = jtrans/jinc in terms of A,B,C, k, k′.

(c) from Griffiths 2.35 Consider a particle moving in a 1D potential

V (x) =

{
0 x < 0
−V0 x ≥ 0

. (5)

Determine the reflection and transmission coefficients for a particle incoming from the left
(negative x) with energy E = V0/3. Use R = jref/jinc, T = jtrans/jinc and verify that
R+ T = 1.

3. Odd States of the Finite Square Well extended from Griffiths 2.29

Consider the finite square well potential

V (x) =


0 for x < −a
−V0 for − a < x < a
0 for a < x

, (6)

as in class.

(a) Find the transcendental equation that determines the energy eigenvalues for bound states
with odd wavefunctions. For a given V0 and a, how many odd bound states are there?

(b) Mathematical software can find numerical values of the energy eigenstates even when a
closed-form solution does not exist. To do so, first write your transcendental equation from
part (a) in terms of dimensionless variables z =

√
2m(V0 + E)(a/h̄) and z0 =

√
2mV0(a/h̄)

in the form f(z, z0) = 0. Then the Maple command fsolve(f(z,3*Pi/4)=0,z=Pi/2)

finds the bound state energy for V0 = h̄2(3π/4)2/2ma2 starting from an initial guess of
z = π/2 for the solution. Find the energy in this case as a multiple of h̄2/2ma2. Then
find the 3 bound state energies for V0 = h̄2(11π/4)2/2ma2 (you will want the three initial
guesses π/2, 3π/2, 5π/2 for z). Attach a printout of your Maple worksheet. Give your
answers to three decimal places.
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