
PHYS-4601 Homework 6 Due 25 Oct 2018

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Gaussian Wavepacket Part II based on Griffiths 2.22

Here we return to the Gaussian wavepacket in 1D, here looking at the time evolution for the
free particle Hamiltonian. We recall from a previous assignment that the wavefunction (at
some initial time) can be written as
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(a) Evolve this state in time. First write 〈p|Ψ(t)〉 and then show that

〈x|Ψ(t)〉 =
(2a/π)1/4√
1 + 2ih̄at/m

e−ax
2/(1+2ih̄at/m) . (2)

Hint: You may want to use the trick of “completing the squares” to evaluate a Gaussian
integral somewhere.

(b) Find the probability density |〈x|Ψ(t)〉|2. Using the result from assignment 3 that 〈x2〉 =
1/4a at t = 0, find 〈x2〉 at a later time t by inspection of the probability density. Quali-
tatively explain what’s happening to the wavefunction as time passes.

(c) What’s the momentum-space probability density |〈p|Ψ(t)〉|2? Does 〈p2〉 change in time?
Does this state continue to saturate the Heisenberg uncertainty relation for t 6= 0?

2. Proofs About Stationary States

(a) Rephrasing Griffiths 2.1(c) Consider the spatial part of a stationary state ψ(x) (that
is, Ψ(x, t) = ψ(x)e−iEt/h̄) and suppose that the potential is an even function of x (ie,
V (x) = V (−x)). Show that ψ(~x) can be chosen to be either an even or odd function of x.
Hint: argue that, for any ψ(x) that solves the time-independent Schrödinger equation, so
does ψ(−x). Use that to show that the even and odd parts ψ±(x) = [ψ(x)±ψ(−x)]/2 are
also solutions with the same energy.

(b) Griffiths 2.2 rephrased Suppose that the energy E of a stationary state in one dimension
is less than the minimum value of the potential. Use the time-independent Schrödinger
equation to show that the second derivative of the wavefunction always has the same sign
as the wavefunction. Then use that fact to argue qualitatively that such a wavefunction
cannot be normalized, proving by contradiction that E must be greater than the minimum
value of the potential.

3. Dirac & the Wall

A particle moves in 1D in a potential

V (x) =

{
∞ x < 0

−αδ(x− d) x > 0
with α > 0 . (3)

Note that the potential for x < 0 means that the wavefunction satisfies the boundary condition
ψ(x = 0) = 0.



(a) Assuming that a bound state exists, show that the bound state energy is determined by a
transcendental equation (

h̄2

mαd

)
z = 1− e−2z , (4)

where z = (d/h̄)
√
−2mE.

(b) Using (4), find the condition that a bound state exists. Hint: think about the plots of the
left-hand and right-hand sides of (4) and their behaviors near z = 0 and for large z.

(c) Show that the bound state energy is approximately

E = −mα
2

2h̄2 +
mα2

h̄2 e−2mαd/h̄2 (5)

for large d (when the wall is far from the delta function) by solving (4) iteratively, assuming
that z is large. In otherwords, find a solution z0 for (4) when you can drop the exponential,
then find δz when z = z0 + δz is the solution and z0 � δz. Finally, treat δz as small when
you substitute back into the energy.

(d) Use Maple software to explore the solutions of (4). Attach a copy of your Maple code and
output for the following steps. You should look up the different Maple commands in the
help or online (google “maple [command name]” to get the help page) to learn about the
options we are using.

1. Use Maple’s solve command to find a general solution to (4) as follows: solve(a*z

= 1-exp(-2*z),z,allsolutions=true). You will find an answer in terms of the
LambertW function. From now on, either set the first argument of LambertW to 0 or
leave it out entirely. Note that a = h̄2/mαd and that 0 < a < 2.

2. Now make a list of numerical solutions of (4) for 100 values of a for 0 < a < 2,
using the following code: zlist:=[seq([i/50,fsolve((i/50)*z = 1-exp(-2*z),

z, 0..2)],i=1..100)]: The colon at the end hides the list, since it is long otherwise.
3. Now plot the solutions for z in three ways on the same plot: the exact solution from

above, the numerical list of values, and the approximate solution z = (1 − e−2/a)/a
from the previous part. Use different colors for the exact and approximate solutions
and circles for the list of values. You can use this code, where you should replace f(a)
with your exact solution above.

with(plots):

P1:=plot(f(a),a=0..2,color=green)

P2:=listplot(zlist,style=point, symbol=circle)

P3:=plot((1-exp(-2/a))/a,a=0..2,color=red)

display([P1,P2,P3],labels=[a,z])

You should see that the green (exact) curve matches the numerical points very well,
but the red approximate curve is different for larger values of a.
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