PHYS-4601 Homework 2 Due 20 Sept 2018

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Diagonalization Based on Griffiths A.26

Consider a three-dimensional Hilbert space with orthonormal basis $|e_i\rangle$, i = 1, 2, 3. The operator A takes the matrix representation

$$A = \sum_{i,j} |e_i\rangle\langle e_i|A|e_j\rangle\langle e_j| \simeq \begin{bmatrix} 2 & i & 1\\ -i & 2 & i\\ 1 & -i & 2 \end{bmatrix}.$$
 (1)

You should be able to check yourself that A is Hermitian.

- (a) Find the eigenvalues a_i and corresponding eigenstates $|a_i\rangle$ $(A|a_i\rangle = a_i|a_i\rangle)$ written in terms of their components $\langle e_j|a_i\rangle$. Choose the eigenstates to form an orthonormal eigenbasis; that is, choose any ambiguities such that $\langle a_i|a_i\rangle = \delta_{ij}$.
- (b) As we will state in class, A can be written in the form

$$A = \sum_{i} a_i |a_i\rangle\langle a_i| , \qquad (2)$$

where a_i are the eigenvalues and $|a_i\rangle$ are the eigenvectors of A. Verify that formula (2) gives the same operator as (1) when you plug in your answer to part (a) for the eigenvalues and eigenvectors.

2. The Momentum Operator

The usual definition of the momentum operator p is that it acts by $p \simeq -i\hbar d/dx$ in the position basis (precisely, $\langle x|p|\psi\rangle = -i\hbar d\psi/dx$ for any state $|\psi\rangle$ with wavefunction $\langle x|\psi\rangle = \psi(x)$). In this problem, we will explore some properties of this operator and its eigenfunctions; in the future, we will see why it makes sense to call it momentum. For simplicity, we work in one dimension with $-\infty < x < \infty$.

(a) Let the state $|p\rangle$ be an eigenstate of the momentum operator with real eigenvalue p (ie, $p \cdot |p\rangle = p|p\rangle$). Show that $|p\rangle$ has wavefunction

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \tag{3}$$

(you may assume the normalization constant is given).

(b) Show that $\langle p'|p\rangle = \delta(p-p')$. Hint: You may find the formula

$$\delta(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikz} \tag{4}$$

helpful.

(c) Show that the wavefunction $\psi(x) = \langle x|\psi\rangle$ and "momentum-space wavefunction" $\tilde{\psi}(p) = \langle p|\psi\rangle$ for any vector $|\psi\rangle$ are Fourier transforms, as defined in Griffiths equation [2.102] (up

to factors of \hbar). To work this out precisely, it will be helpful for you to rescale x and p to remove explicit powers of \hbar .

What we have seen so far is that $p \simeq -i\hbar d/dx$ has complex exponentials for eigenfunctions, and that this implies that $\langle x|\psi\rangle$ and $\langle p|\psi\rangle$ are Fourier transforms for any state $|\psi\rangle$. Now we want to prove the reverse: assuming (3), we will show that $p \simeq -i\hbar d/dx$ in the position eigenbasis.

- (d) For momentum to be observable, it must be Hermitian. Assuming p is a Hermitian operator, show $\langle p|p|\psi\rangle=p\tilde{\psi}(p)$ for any state $|\psi\rangle$. In other words, you are showing that $p\cdot\tilde{\psi}(p)=p\tilde{\psi}(p)$ on momentum-space wavefunctions (like $x\cdot\psi(x)=x\psi(x)$ on normal wavefunctions).
- (e) Assuming (3), we know that the wavefunction and momentum-space wavefunction are Fourier transforms of each other. Use this fact to show that

$$\langle x|p|\psi\rangle = -i\hbar \frac{d\psi}{dx}(x) \ .$$
 (5)

What this means is that defining $p \simeq -i\hbar d/dx$ is equivalent to defining the state $|p\rangle$ by (3) — you can derive one statement from the other.

3. The Last Eigenvector

A system with a three-dimensional Hilbert space has Hamiltonian represented by the matrix

$$H \simeq \frac{E_0}{3} \begin{bmatrix} 1/2 & -1/2 & 2i \\ -1/2 & 1/2 & -2i \\ -2i & 2i & -1 \end{bmatrix} . \tag{6}$$

Two of the eigenstates are represented by the column vectors

$$|1\rangle \simeq \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ and } |2\rangle \simeq \frac{1}{\sqrt{3}} \begin{bmatrix} i\\-i\\1 \end{bmatrix}$$
 (7)

- (a) Find the third eigenstate $|3\rangle$ as a column vector, including proper normalization.
- (b) Find all the eigenvalues of H [EXTRA CREDIT: and write H as a matrix in the $\{|1\rangle, |2\rangle, |3\rangle\}$ basis.]
- (c) Write the projection operator $|3\rangle\langle3|$ as a matrix in the original basis [EXTRA CREDIT: and the $\{|1\rangle, |2\rangle, |3\rangle\}$ basis.]