PHYS-4601 Homework 15 Due 7 Feb 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

- 1. Comparing Expectation Values
 - (a) based on Griffiths 4.13 Find $\langle r^2 \rangle$ for the ground state of a hydrogen-like atom (a single electron moving in a central Coulomb potential) in terms of the Bohr radius. Find the ratio of this result between hydrogen to that for a helium ion, which has a single electron orbiting a nucleus of charge +2e. (In other words, find $\langle r^2 \rangle_H / \langle r^2 \rangle_{He^+}$.) What does this mean about the comparative "size" of these two atoms?
 - (b) Now find the ratio of $\langle r^2 \rangle$ for the $n = 2, \ell = 1, m = 0$ state of hydrogen to the $n = 2, \ell = 0, m = 0$ state.
 - (c) Finally, find the ratio of $\langle z^2 \rangle$ for the $n = 2, \ell = 1, m = 0$ state of hydrogen to the $n = 2, \ell = 0, m = 0$ state. *Hint:* You can find $\langle z^2 \rangle$ for the $n = 2, \ell = 0, m = 0$ state by using symmetry arguments and your work from part (b).

2. The GHZM Experiment

To answer this question, you will need to watch the video of Sidney Coleman's famous lecture at http://media.physics.harvard.edu/video/?id=SidneyColeman_QMIYF. This is the video listed on the reading assignment.

Three electrons are prepared in the so-called "GHZM" spin state $|\psi\rangle = (|+\rangle_1|+\rangle_2|+\rangle_3 - |-\rangle_1|-\rangle_2|-\rangle_3)/\sqrt{2}$ and distributed so that laboratories at locations A, B, and C each receive one electron.

- (a) Show that $|\psi\rangle$ is an eigenstate of the operator $S_x^{(1)}S_y^{(2)}S_y^{(3)}$ and find the eigenvalue.
- (b) If the electrons' total state is written as $|\phi\rangle \otimes |\psi\rangle$, where $|\phi\rangle$ is the spatial state of the electrons, what is $|\phi\rangle$? Each single-electron spatial state is $|A\rangle$, $|B\rangle$, or $|C\rangle$.

3. Many Worlds Quantum Mechanics

You are alone in a closed laboratory, and you possess a sodium atom with positive spin oriented along the +x axis (the sodium ground state has total angular momentum J = 1/2). You then send the atom through a Stern-Gerlach apparatus and measure the z component of the atom's angular momentum. In the many worlds interpretation of quantum mechanics, what is the state of the system (a) before and (b) after your measurement?