PHYS-4601 Homework 13 Due 24 Jan 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Hadron Spins Griffiths 4.35 plus

Quarks are elementary particles with spin 1/2, which we see in bound states called *hadrons*. Hadrons come in two varieties. In the following, assume that the quarks have zero orbital angular momentum.

- (a) *Mesons* are formed of a quark and antiquark (think of it as two quarks). What are the possible total spin quantum numbers of a meson?
- (b) *Baryons* are formed of three distinct quarks. What are the possible total spin quantum numbers? How many complete sets of states are there for each of those total spins?

2. Spin Interactions

(a) Two spin 1/2 particles are fixed in position but have interacting spins. Their Hamiltonian is

$$H = J\vec{S}^{(1)} \cdot \vec{S}^{(2)} \tag{1}$$

for some constant J. Here $S^{(i)}$ is the spin operator of the *i*th particle. Find the energy eigenvalues of this system, their degeneracies, and the corresponding eigenstates. *Hint*: You will want to work in terms of the total spin quantum numbers.

(b) The two spins have the same gyromagnetic ratio γ . In the presence of a magnetic field, the Hamiltonian becomes

$$H = J\vec{S}^{(1)} \cdot \vec{S}^{(2)} - \gamma \vec{B} \cdot \left(\vec{S}^{(1)} + \vec{S}^{(2)}\right) .$$
⁽²⁾

Now find the energy eigenvalues and their degeneracies. You may take \vec{B} to lie along the z direction.

(c) Suppose that initially the first spin is up, while the second spin is down (ie, |+⟩ and |−⟩ respectively). What is the probability of finding the first spin up at a later time t? If both spins are initially up, what is the probability?

3. Change of Basis

Consider an electron (spin-1/2) moving in a hydrogen atom. *Hint:* You may find the Clebsch-Gordan coefficient table and equation (1) from assignment 11 helpful.

- (a) Suppose the electron has orbital angular momentum $\ell = 2$. Write the total angular momentum j = 5/2, $m_j = 3/2$ state in terms of the orbital and spin angular momentum states. That is, write it as a sum of the form $\sum c_{\ell,m,s,m_s} |\ell,m\rangle |s,m_s\rangle$.
- (b) Assume l = 2 again, and suppose that the z components of orbital angular momentum and spin are given by $m = 0, m_s = \pm 1/2$. If you measure the total angular momentum, what is the probability of measuring $m_j = \pm 3/2$? $m_j = \pm 1/2$? j = 5/2? j = 3/2?
- (c) Suppose instead that l = 3. Now write the total angular momentum j = 7/2, $m_j = -5/2$ state in terms of the orbital and spin angular momentum states.