PHYS-4601 Homework 12 Due 17 Jan 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Electromagnetic Gauge Transformations from Griffiths 4.61

Recall from class that the Hamiltonian for a particle of charge q is

$$H = \frac{1}{2m} \left(\vec{p} - q\vec{A} \right)^2 + q\Phi , \qquad (1)$$

where the potential is Φ and vector potential is \vec{A} . The electric and magnetic field are

$$\vec{E} = -\vec{\nabla}\Phi - \frac{\partial\vec{A}}{\partial t} , \quad \vec{B} = \vec{\nabla} \times \vec{A} .$$
 (2)

(a) Show that the electromagnetic fields are invariant under *gauge transformations*. That is, show that the potentials

$$\Phi' = \Phi - \frac{\partial \Lambda}{\partial t} , \quad \vec{A}' = \vec{A} + \vec{\nabla}\Lambda$$
(3)

give the same \vec{E} and \vec{B} fields as Φ and \vec{A} , where Λ is any function of \vec{x} and t.

(b) Assume that a wavefunction $\Psi(\vec{x}, t)$ solves the time-dependent Schrödinger equation for potentials Φ and \vec{A} . Show that

$$\Psi' = e^{iq\Lambda/\hbar}\Psi\tag{4}$$

solves the time-dependent Schrödinger equation for the potentials Φ' and $\vec{A'}$ given in (3). This shows that quantum physics also respects gauge transformations.

This gauge invariance is a critical feature of the quantum mechanical theory of electromagnetism with profound consequences. We may explore aspects of it again in assignments.

2. Landau Levels adapted from Griffiths 4.60

This problem considers the motion of electrons which are essentially confined to a 2D surface in the presence of an orthogonal magnetic field. This is the system used to describe the quantum Hall effect. Since this is a 2D problem, we won't include p_z (if you like, you can imagine that we consider only eigenstates of p_z with zero eigenvalue).

- (a) Show that a magnetic field $\vec{B} = B_0 \hat{k}$ can be described by vector potential $\vec{A} = (B_0/2)(x\hat{j} y\hat{i})$. $(\hat{i}, \hat{j}, \hat{k} \text{ are unit vectors along } x, y, z \text{ respectively.})$
- (b) Show that we can write

$$H = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} m \omega^2 \left(x^2 + y^2 \right) - \omega L_z , \qquad (5)$$

where $\omega = qB_0/2m$. Argue that $[H, L_z] = 0$ (you may use results from earlier problems).

(c) Except for the L_z term at the end, this looks like a harmonic oscillator in the x and y directions. Write H and L_z in terms of the raising and lowering operators $a_x^{\dagger}, a_y^{\dagger}, a_x, a_y$ of those two harmonic oscillators. Evaluate $L_z |n_x, n_y\rangle$; is it diagonal?

(d) Apparently we have not yet found how to diagonalize H and L_z simultaneously. Now define lower operators

$$A = \frac{1}{\sqrt{2}}(a_y + ia_x) , \quad \bar{A} = \frac{1}{\sqrt{2}}(a_y - ia_x)$$
(6)

and their adjoints, the raising operators. First, show that A, A^{\dagger} and $\bar{A}, \bar{A}^{\dagger}$ satisfy the usual commutation relations for raising and lowering operators. Then, find H and L_z in terms of $A, \bar{A}, A^{\dagger}, \bar{A}^{\dagger}$. From those expressions, argue that the energy eigenvalues are $E_n = \hbar \omega_B (n + 1/2)$, where $\omega_B = 2\omega = qB_0/m$ is the cyclotron frequency, and that the energy eigenstates are infinitely degenerate. These energy levels are called Landau levels (the stationary states of electrons in a piece of metal in a magnetic field, relevant for the Hall effect); in practice, the finite size of the metal where the electrons live reduces the degeneracy to a finite amount.

3. MRI Physics Inspired by a question by Horbatsch

Consider a spin-1/2 proton with gyromagnetic ratio γ in the presence of a magnetic field

$$\vec{B} = B_0 \hat{z} + B_1 \cos(\omega t) \hat{x} - B_1 \sin(\omega t) \hat{y}$$
(7)

at its fixed position. This is a magnetic field with a fixed z component and another component rotating in the x, y plane.

- (a) Write the Hamiltonian in terms of spin operators and then as a matrix in the eigenbasis of the S_z operator.
- (b) It is actually possible to find the full time-dependent state for this system. If the spin is up at t = 0, the solution of the time-dependent Schrödinger equation is

$$\langle +|\Psi(t)\rangle = e^{i\omega t/2} \left[\cos\left(\alpha t/2\right) - i\frac{(\omega - \gamma B_0)}{\alpha} \sin\left(\alpha t/2\right) \right]$$

$$\langle -|\Psi(t)\rangle = ie^{-i\omega t/2} \frac{\gamma B_1}{\alpha} \sin\left(\alpha t/2\right)$$

$$(8)$$

with $\alpha = \sqrt{\gamma^2 B_1^2 + (\omega - \gamma B_0)^2}$. Use Maple to verify that (8) solves the Schrödinger equation. Input the Schrödinger equation and initial conditions as a list of equations and then the solution above as another list. Then use the odetest function in Maple to check that (8) solves the time-dependent Schrödinger equation. Include a copy of your Maple code. You may want to use the Maple help to learn how to use odetest.

(c) Use (8) to find the transition probability from spin up $(|+\rangle)$ to spin down $(|-\rangle)$ as a function of time. Find the conditions that this probability is one.