PHYS-4601 Homework 11 Due 10 Jan 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Raising and Lowering

(a) More or less Griffiths 4.18 Using the relation for $L_{\pm}L_{\mp}$ given in class and the text, show that

$$
L_{\pm}|\ell,m\rangle = \hbar \sqrt{(\ell \mp m)(\ell \pm m + 1)}|\ell,m \pm 1\rangle. \tag{1}
$$

(b) In a vector/matrix representation of the $\ell = 1$ states where

$$
|1,1\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, |1,0\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, |1,-1\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \qquad (2)
$$

use [\(1\)](#page-0-0) to find matrix representations of L_{\pm} and then L_x and L_y .

(c) Griffiths 4.22(b) Use $L_+ \cdot Y_\ell^\ell = 0$ and $L_z \cdot Y_\ell^\ell = \ell \hbar Y_\ell^\ell$ to determine $Y_\ell^\ell(\theta, \phi)$ up to overall normalization.

2. Commutators and Things partly from Griffiths 4.19, partly inspired by problems in Ohanian

- (a) Find the commutators $[L_z, x]$, $[L_z, y]$, $[L_z, p_x]$, and $[L_z, p_y]$.
- (b) Show that $[L_z, H] = 0$ for Hamiltonian $H = \bar{p}^2/2m + V$ with central potential V. Argue that therefore $[\vec{L}^2, H] = 0$ also. Hint: Assume $V(r)$ is a power series; then argue L_z and r commute based on $[L_z, r^2]$.
- (c) Using the commutation relations, find $\vec{L} \times \vec{L}$ (as an operator quantity). How does your result relate to the classical statement that a vector cross itself is zero?

3. Probabilities and Expectations based on problems by Ohanian

Some particle has a wavefunction

$$
\psi(\vec{x}) = \frac{1}{4} \sqrt{\frac{5}{\pi}} \sin^2 \theta \left[1 + \sqrt{14} \cos \theta \right] \cos(2\phi) R(r) , \qquad (3)
$$

where R is normalized $(\int_0^\infty dr r^2 |R|^2 = 1)$.

- (a) If you measure the total orbital angular momentum \vec{L}^2 , what are the possible values you would find and the probabilities you would measure each value?
- (b) Find $\langle L_x \rangle$, $\langle L_y \rangle$, and $\langle L_z \rangle$ in this state.
- (c) Find the uncertainty of L_z .

4. Angular Dependence of Spherical Harmonic Oscillator

Consider a 3D isotropic harmonic oscillator (potential $V(\vec{x}) = m\omega^2 r^2/2$). Recall from a previous assignment that separation of variables in Cartesian coordinates allows us to write the eigenstates as $|n_x, n_y, n_z\rangle = (1/\sqrt{n_x! n_y! n_z!}) (a_x^{\dagger})^{n_x} (a_y^{\dagger})^{n_y} (a_z^{\dagger})^{n_z} |0\rangle$ in terms of the Cartesian harmonic oscillator ladder operators $(a_x, a_x^{\dagger}, \text{ etc})$. Write L_z in terms of the Cartesian harmonic oscillator ladder operators. Then use ladder operator techniques to show that $(|1,0,0\rangle \pm i|0,1,0\rangle)/\sqrt{2}$ and $|0, 0, 1\rangle$ are eigenstates of L_z and find their eigenvalues.

5. Selection Rules and Degeneracy

The angular momentum commutation relations can give us information about matrix elements ("selection rules") and eigenvalues (degeneracy). Let $|n, \ell, m\rangle$ and $|n, \ell, m'\rangle$ be \vec{L}^2, L_z eigenstates labeled by ℓ, m (or m') as usual, where n is an additional quantum number describing the radial wavefunction.

- (a) Using the commutation relations, prove that $\langle n, \ell, m'|L_x|n, \ell, m\rangle = i(m'-m)\langle n, \ell, m'|L_y|n, \ell, m\rangle$.
- ([b\)](#page-0-2) In problem $2(b)$, we saw that the Hamiltonian with a central potential V commutes with all the angular momentum operators. Use this fact to show that, if $|n, \ell, m'\rangle$ is an energy eigenstate with eigenvalue E, the states $|n, \ell, m\rangle$ with the same n, ℓ are all energy eigenstates for the same energy for all allowed values of m given a central potential.

6. General Spin Components

In this problem, you will consider a more general component of spin (rather than one along x , y, or z). In the below, define a unit vector $\hat{a} = \cos \theta \hat{z} + \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y}$. Assume the total spin is $s = 1/2$.

- (a) Find the eigenvectors of $\hat{a} \cdot \vec{S}$ in the eigenbasis of S_z .
- (b) Suppose an electron in the eigenstate of $\hat{a} \cdot \vec{S}$ with eigenvalue $+\hbar/2$ is placed in a magnetic field $\vec{B} = B_0 \hat{z}$ direction. The Hamiltonian is $H = -\gamma \vec{B} \cdot \vec{S} = -\gamma B_0 S_z$ (this is a magnetic moment interaction). What is the probability that a measurement of the energy returns $E = -\gamma B_0 \hbar/2?$
- (c) Calculate the expectation value of $S_xS_zS_x$ in the eigenstate of $\hat{a} \cdot \vec{S}$ with eigenvalue $+\hbar/2$.