PHYS-4601 Homework 11 Due 10 Jan 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Raising and Lowering

(a) More or less Griffiths 4.18 Using the relation for $L_{\pm}L_{\mp}$ given in class and the text, show that

$$L_{\pm}|\ell,m\rangle = \hbar \sqrt{(\ell \mp m)(\ell \pm m + 1)}|\ell,m\pm 1\rangle .$$
(1)

(b) In a vector/matrix representation of the $\ell = 1$ states where

$$|1,1\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad |1,0\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad |1,-1\rangle = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \quad (2)$$

use (1) to find matrix representations of L_{\pm} and then L_x and L_y .

(c) Griffiths 4.22(b) Use $L_+ \cdot Y_{\ell}^{\ell} = 0$ and $L_z \cdot Y_{\ell}^{\ell} = \ell \hbar Y_{\ell}^{\ell}$ to determine $Y_{\ell}^{\ell}(\theta, \phi)$ up to overall normalization.

2. Commutators and Things partly from Griffiths 4.19, partly inspired by problems in Ohanian

- (a) Find the commutators $[L_z, x]$, $[L_z, y]$, $[L_z, p_x]$, and $[L_z, p_y]$.
- (b) Show that $[L_z, H] = 0$ for Hamiltonian $H = \vec{p}^2/2m + V$ with central potential V. Argue that therefore $[\vec{L}^2, H] = 0$ also. *Hint:* Assume V(r) is a power series; then argue L_z and r commute based on $[L_z, r^2]$.
- (c) Using the commutation relations, find $\vec{L} \times \vec{L}$ (as an operator quantity). How does your result relate to the classical statement that a vector cross itself is zero?

3. Probabilities and Expectations based on problems by Ohanian

Some particle has a wavefunction

$$\psi(\vec{x}) = \frac{1}{4}\sqrt{\frac{5}{\pi}}\sin^2\theta \left[1 + \sqrt{14}\cos\theta\right]\cos(2\phi)R(r) , \qquad (3)$$

where R is normalized $(\int_0^\infty dr r^2 |R|^2 = 1).$

- (a) If you measure the total orbital angular momentum \vec{L}^2 , what are the possible values you would find and the probabilities you would measure each value?
- (b) Find $\langle L_x \rangle$, $\langle L_y \rangle$, and $\langle L_z \rangle$ in this state.
- (c) Find the uncertainty of L_z .

4. Angular Dependence of Spherical Harmonic Oscillator

Consider a 3D isotropic harmonic oscillator (potential $V(\vec{x}) = m\omega^2 r^2/2$). Recall from a previous assignment that separation of variables in Cartesian coordinates allows us to write the eigenstates as $|n_x, n_y, n_z\rangle = (1/\sqrt{n_x!n_y!n_z!})(a_x^{\dagger})^{n_x}(a_y^{\dagger})^{n_y}(a_z^{\dagger})^{n_z}|0\rangle$ in terms of the Cartesian harmonic oscillator ladder operators $(a_x, a_x^{\dagger}, \text{ etc})$. Write L_z in terms of the Cartesian harmonic oscillator ladder operators. Then use ladder operator techniques to show that $(|1, 0, 0\rangle \pm i|0, 1, 0\rangle)/\sqrt{2}$ and $|0, 0, 1\rangle$ are eigenstates of L_z and find their eigenvalues.

5. Selection Rules and Degeneracy

The angular momentum commutation relations can give us information about matrix elements ("selection rules") and eigenvalues (degeneracy). Let $|n, \ell, m\rangle$ and $|n, \ell, m'\rangle$ be \vec{L}^2, L_z eigenstates labeled by ℓ, m (or m') as usual, where n is an additional quantum number describing the radial wavefunction.

- (a) Using the commutation relations, prove that $\langle n, \ell, m' | L_x | n, \ell, m \rangle = i(m'-m) \langle n, \ell, m' | L_y | n, \ell, m \rangle$.
- (b) In problem 2(b), we saw that the Hamiltonian with a central potential V commutes with all the angular momentum operators. Use this fact to show that, if $|n, \ell, m'\rangle$ is an energy eigenstate with eigenvalue E, the states $|n, \ell, m\rangle$ with the same n, ℓ are all energy eigenstates for the same energy for all allowed values of m given a central potential.

6. General Spin Components

In this problem, you will consider a more general component of spin (rather than one along x, y, or z). In the below, define a unit vector $\hat{a} = \cos \theta \hat{z} + \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y}$. Assume the total spin is s = 1/2.

- (a) Find the eigenvectors of $\hat{a} \cdot \vec{S}$ in the eigenbasis of S_z .
- (b) Suppose an electron in the eigenstate of $\hat{a} \cdot \vec{S}$ with eigenvalue $+\hbar/2$ is placed in a magnetic field $\vec{B} = B_0 \hat{z}$ direction. The Hamiltonian is $H = -\gamma \vec{B} \cdot \vec{S} = -\gamma B_0 S_z$ (this is a magnetic moment interaction). What is the probability that a measurement of the energy returns $E = -\gamma B_0 \hbar/2$?
- (c) Calculate the expectation value of $S_x S_z S_x$ in the eigenstate of $\hat{a} \cdot \vec{S}$ with eigenvalue $+\hbar/2$.