PHYS-3301 Winter Homework 8 Due 14 Mar 2018

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Derivatives Have Lowered Indices

As discussed in the class notes, 4-vectors with raised or lowered indices have the following Lorentz transformations:

$$a^{\mu'} = \Lambda^{\mu'}{}_{\nu} a^{\nu} \text{ and } a_{\mu'} = \Lambda^{\nu}{}_{\mu'} a_{\nu} ,$$
 (1)

where $[\Lambda^{\mu'}{}_{\nu}]$ is the usual Lorentz transformation matrix from $S \to S'$ and $[\Lambda^{\nu}{}_{\mu'}]$ is its matrix inverse (the transformation from $S' \to S$).

- (a) Using the fact that the spacetime position x^{μ} is a 4-vector, find the partial derivatives $\partial x^{\mu}/\partial x^{\nu'}$ and $\partial x^{\mu'}/\partial x^{\nu}$ in terms of $\Lambda^{\mu'}_{\ \nu}$ and $\Lambda^{\nu}_{\ \mu'}$. Hint: For two positions as measured in the same frame, $\partial x^{\mu}/\partial x^{\nu} = \delta^{\mu}_{\nu}$ (think about why).
- (b) If f is a Lorentz invariant function (meaning its value at a fixed spacetime point is the same in any frame like the temperature), use the multivariable chain rule to show that

$$\frac{\partial f}{\partial x^{\mu'}} = \Lambda^{\nu}{}_{\mu'} \frac{\partial f}{\partial x^{\nu}} \ . \tag{2}$$

In other words, you are showing that a partial derivative has the same transformation as a 4-vector with a lowered index. As a result, people will usually write $\partial_{\mu} f \equiv \partial f / \partial x^{\mu}$.

- 2. **4-Vectors and Changing Frames** Consider a 4-vector U^{μ} with components $U^{0} = \cosh \phi$, $U^{1} = \sinh \phi$, $U^{2} = U^{3} = 0$ in some reference frame S. *Hint:* You will want to remember hyperbolic trig identities.
 - (a) What is the square of U^{μ} ? Is U^{μ} lightlike, timelike, or spacelike?
 - (b) Now boost to reference frame S' which has velocity $v = c \tanh \theta$ along the x direction relative to S. What are the components of U^{μ} in S'? Write your answer in terms of the "angle" $\phi \theta$.
 - (c) If $\phi \theta$ is itself a rapidity, write the associated velocity in terms of $\tanh \theta$ and $\tanh \phi$.
 - (d) Instead, consider a boost to a frame S'' with velocity $v = c \tanh \theta$ along the y direction relative to S. This has Lorentz transformation matrix

$$\left[\Lambda^{\mu''}_{\ \nu} \right] = \begin{bmatrix}
 \cosh \theta & 0 & -\sinh \theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sinh \theta & 0 & \cosh \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} .
 \tag{3}$$

What are the components of U^{μ} in frame S''?

(e) Find the square U^2 as calculated in the S'' frame using your answer to part (d). Is it the same as your answer from part (a)?

3. Some Scalar Products

In some frame, the components of two 4-vectors are

$$a^{\mu} = (2, 0, 0, 1) \text{ and } b^{\mu} = (5, 4, 3, 0) .$$
 (4)

inspired by a problem in Hartle

- (a) Find a^2 , b^2 , and $a \cdot b$.
- (b) Does there exist another inertial frame in which the components of a^{μ} are (1,0,0,1)? What about b^{μ} ? Explain your reasoning.

Now consider lightlike 4-vectors f^{μ} and g^{μ} .

- (c) If f^{μ} and g^{μ} are orthogonal $(f \cdot g = 0)$, prove that they are parallel $(f^{\mu} \propto g^{\mu})$.
- (d) Is the 4-vector $f^{\mu} + g^{\mu}$ spacelike, timelike, or lightlike? Assume that both $f^0 > 0$ and $g^0 > 0$.

4. Energy-Momentum Tensor

The energy-momentum tensor $T^{\mu\nu}$ describes the energy and momentum densities of a fluid. For a fluid with no shear stress, the components are defined as $T^{00} = \rho$, the energy density; $T^{0i} = T^{i0} = \mathcal{P}^i$, the density of the *i*th component of momentum; and $T^{ij} = p\delta^{ij}$ is the pressure (we assume that the pressure is the same in all directions).

- (a) List all the components $T_{\mu\nu}$ with lowered indices.
- (b) In the fluid's rest frame S, $\mathcal{P}^i = 0$. What is the momentum density in a frame S' moving at speed v in the +x direction with respect to S if the fluid is radiation with $p = \rho/3$?
- (c) If the fluid is vacuum energy, the energy-momentum tensor has $\mathcal{P}^i = 0$ and $p = -\rho$ in its rest frame S. Show that the energy-momentum tensor is the same in all inertial frames. That is, given another frame S' moving at speed v in the +x direction with respect to S, show that $[T^{\mu'\nu'}] = [T^{\mu\nu}]$ as a matrix.