PHYS-4601 Homework 8 Due 17 Nov 2016

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Isotropic Harmonic Oscillator from Griffiths 4.38,39

Consider a harmonic oscillator where the restoring force is independent of the direction. In this case, the potential is

$$V(r) = \frac{1}{2}m\omega^2 r^2 \ . \tag{1}$$

- (a) Show that the energy eigenvalues are $E_n = \hbar\omega(n+3/2)$, where n is any non-negative integer. It's easiest to do this using separation of variables in Cartesian coordinates.
- (b) Find the degeneracy of states with energy E_n .
- (c) Now consider the Schrödinger equation in spherical coordinates and restrict to the case $\ell=0$ for the radial equation. We know that the ground state has $\psi \propto \exp[-\rho^2/2]$ from separation of variables in Cartesian coordinates, where $\rho = \sqrt{m\omega/\hbar} r$. Therefore, we define $u=v(\rho)\exp[-\rho^2/2]$, where $v(\rho)=\rho+\cdots$ is a polynomial. Argue that the (unnormalized) wavefunctions $u=H_n(\rho)\exp[-\rho^2/2]$ solve the radial equation for any odd n. Find the associated energies for n=1,3. Did you find the energies you expected from part (a)? Explain why or why not.

2. Spherical Wells extended from Griffiths 4.8,4.9

(a) First, consider the $\ell = 1$ states of the infinite spherical well $(V(r) = 0 \text{ for } r < a, V(r) = \infty \text{ for } r > a)$. Show that the allowed energy eigenvalues are $E_n = \hbar^2 x_n^2 / 2ma^2$, where x_n is the *n*th root of the spherical Bessel function $j_1(x)$, and that $E_n \approx (\hbar^2 \pi^2 / 2ma^2)(n+1/2)^2$ for $n \gg 1$. Hint: for the last part, you will need to know an expression of $j_1(x)$ in terms of trig functions. By definition $x_1 < x_2 < \cdots$.

In the rest of this problem, donsider a particle of mass m in the spherically symmetric potential

$$V(r) = \begin{cases} -V_0 & (r < a) \\ 0 & (r \ge a) \end{cases} . \tag{2}$$

In 1D quantum mechanics, any potential that goes to zero at infinity and is negative anywhere has at least one bound state. We will see that is not true in 3D.

- (b) Assume $\ell = 0$ and energy E < 0. Find a transcendental equation that determines E. What is the condition on V_0 that allows a bound state?
- (c) Use Maple to solve the transcendental equation of part (b) and plot the ground state energies as a function of V_0 in the range $\pi^2\hbar^2/8ma^2 < V_0 < \pi^2\hbar^2/2ma^2$. Attach a printout of your code and the plot. *Hint:* One way to proceed is to solve for the energy with a particular value of V_0 using fsolve and step through values of V_0 using seq, then listplot.

3. Electromagnetic Gauge Transformations Griffiths 4.61

Now that we're in 3D, we could imagine having an electromagnetic field. For a particle of charge q in potential Φ and vector potential \vec{A} , the Hamiltonian is

$$H = \frac{1}{2m} \left(\vec{p} - q\vec{A} \right)^2 + q\Phi . \tag{3}$$

The electric and magnetic field are

$$\vec{E} = -\vec{\nabla}\Phi - \frac{\partial \vec{A}}{\partial t} , \quad \vec{B} = \vec{\nabla} \times \vec{A} . \tag{4}$$

For more details, see Griffiths problem 4.59.

(a) Show that the electromagnetic fields are invariant under gauge transformations. That is, show that the potentials

$$\Phi' = \Phi - \frac{\partial \Lambda}{\partial t} , \quad \vec{A}' = \vec{A} + \vec{\nabla} \Lambda$$
 (5)

give the same \vec{E} and \vec{B} fields as Φ and \vec{A} , where Λ is any function of \vec{x} and t.

(b) Since the Hamiltonian involves the potentials, it looks like we can't just make a gauge transformation in the quantum theory. However, assuming that a wavefunction $\Psi(\vec{x},t)$ solves the time-dependent Schrödinger equation for potentials Φ and \vec{A} , show that

$$\Psi' = e^{iq\Lambda/\hbar}\Psi\tag{6}$$

solves the time-dependent Schrödinger equation for the potentials Φ' and \vec{A}' given in (5).

This gauge invariance is a critical feature of the quantum mechanical theory of electromagnetism with profound consequences. We may explore aspects of it again in assignments.