PHYS-4601 Homework 7 Due 3 Nov 2016

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

- 1. Matrix Elements and Probabilities
 - (a) Calculate the matrix elements $\langle n|x|m\rangle$ and $\langle n|p^2|m\rangle$ for $|n\rangle, |n'\rangle$ stationary states of the harmonic oscillator. You *must* use Dirac and operator notation and *may not* carry out any integrals.
 - (b) Suppose the system is in the state $|\psi\rangle = (|0\rangle + 2e^{i\theta}|1\rangle)/\sqrt{5}$. Using your previous result, find $\langle x \rangle$ as a function of θ and explain the relation of your answer to the time evolution of a particle initially in that state with $\theta = 0$.
 - (c) Now find the probability density for finding a particle in state $|\psi\rangle$ at position x = 0 as a function of θ .

2. Wavefunctions and Ladder Operators

- (a) from Griffiths 2.10 Griffiths uses the condition $a|0\rangle = 0$ to find the ground state wavefunction, then a^{\dagger} to find the first excited state wavefunction. Apply the raising operator a^{\dagger} to $|1\rangle$ to find the wavefunction $\langle x|2\rangle$ of the second excited state.
- (b) Prove that the Hermite polynomials satisfy the relationship

$$H_{n+1}(\xi) = 2\xi H_n(\xi) - 2nH_{n-1}(\xi) .$$
(1)

Hint: consider $\langle x|x|n \rangle$ for the harmonic oscillator written in two different ways and then translate that in terms of wavefunctions.

3. Coherent States based on Griffiths 3.35 and beyond

In this problem, we will study *coherent states*, which are eigenfunctions of the lowering operator

$$a|\alpha\rangle = \alpha|\alpha\rangle$$
, (2)

where the eigenvalue α is generally complex.

- (a) Is there any energy eigenstate that is a coherent state? If so, list which energy eigenstate(s) are coherent and give the eigenvalue(s).
- (b) Find the expectation values of x and p in the coherent state $|\alpha\rangle$ (use the ladder operators).
- (c) Then find the uncertainties of x and p in $|\alpha\rangle$ and show that any coherent state is a state of minimal undertainty.
- (d) Show that

$$|\alpha\rangle = e^{-|\alpha|^2/2} \exp\left[\alpha a^{\dagger}\right]|0\rangle .$$
(3)

is a coherent state of eigenvalue α .

(e) A squeezed state $|\zeta\rangle$ is a state that obeys the equation $a|\zeta\rangle = \zeta a^{\dagger}|\zeta\rangle$ for a complex number ζ with $|\zeta| < 1$. Show that $\langle x \rangle = 0$ and $\langle p \rangle = 0$ in the squeezed state $|\zeta\rangle$. *Hint:* Reduce the problem to showing that $\langle a \rangle = 0$. It will help to remember that $\langle a \rangle^* = \langle a^{\dagger} \rangle$.