PHYS-4601 Homework 2 Due 22 Sept 2016

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Diagonalization Based on Griffiths A.26

Consider a three-dimensional Hilbert space with orthonormal basis $|e\rangle_i$, $i = 1, 2, 3$. The operator A takes the matrix representation

$$
A = \sum_{i,j} |e_i\rangle\langle e_i| A |e_j\rangle\langle e_j| \simeq \begin{bmatrix} 2 & i & 1 \\ -i & 2 & i \\ 1 & -i & 2 \end{bmatrix} . \tag{1}
$$

You should be able to check yourself that A is Hermitian.

- (a) Find the eigenvalues a_i and corresponding eigenstates $|a_i\rangle (A|a_i\rangle = a_i|a_i\rangle)$ written in terms of their components $\langle e_i | a_i \rangle$. Choose the eigenstates to form an orthonormal eigenbasis; that is, choose any ambiguities such that $\langle a_i | a_j \rangle = \delta_{ij}$.
- (b) As we will state in class, A can be written in the form

$$
A = \sum_{i} a_i |a_i \rangle \langle a_i | \tag{2}
$$

where a_i are the eigenvalues and $|a_i\rangle$ are the eigenvectors of A. Verify that formula [\(2\)](#page-0-0) gives the same operator as [\(1\)](#page-0-1) when you plug in your answer to part [\(a\)](#page-0-2) for the eigenvalues and eigenvectors.

2. The Momentum Operator

The usual definition of the momentum operator p is that it acts by $p \simeq -i\hbar d/dx$ in the position basis (precisely, $\langle x|p|\psi \rangle = -i\hbar d\psi/dx$ for any state $|\psi\rangle$ with wavefunction $\langle x|\psi \rangle = \psi(x)$). In this problem, we will explore some properties of this operator and its eigenfunctions; in the future, we will see why it makes sense to call it momentum. For simplicity, we work in one dimension with $-\infty < x < \infty$.

(a) Let the state $|p\rangle$ be an eigenstate of the momentum operator with real eigenvalue p (ie, $p \cdot |p\rangle = p|p\rangle$. Show that $|p\rangle$ has wavefunction

$$
\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \tag{3}
$$

(you may assume the normalization constant is given).

(b) Show that $\langle p'|p \rangle = \delta(p - p')$. Hint: You may find the formula

$$
\delta(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikz} \tag{4}
$$

helpful.

(c) Show that the wavefunction $\psi(x) = \langle x|\psi\rangle$ and "momentum-space wavefunction" $\psi(p) =$ $\langle p|\psi\rangle$ for any vector $|\psi\rangle$ are Fourier transforms, as defined in Griffiths equation [2.102] (up to factors of \hbar). To work this out precisely, it will be helpful for you to rescale x and p to remove explicit powers of \hbar .

What we have seen so far is that $p \simeq -i\hbar d/dx$ has complex exponentials for eigenfunctions, and that this implies that $\langle x|\psi\rangle$ and $\langle p|\psi\rangle$ are Fourier transforms for any state $|\psi\rangle$. Now we want to prove the reverse: assuming [\(3\)](#page-0-3), we will show that $p \simeq -i\hbar d/dx$ in the position eigenbasis.

- (d) For momentum to be observable, it must be Hermitian. Assuming p is a Hermitian operator, show $\langle p|p|\psi\rangle = p\psi(p)$ for any state $|\psi\rangle$. In other words, you are showing that $p \cdot \psi(p) = p\psi(p)$ on momentum-space wavefuntions (like $x \cdot \psi(x) = x\psi(x)$ on normal wavefunctions).
- (e) Assuming [\(3\)](#page-0-3), we know that the wavefunction and momentum-space wavefunction are Fourier transforms of each other. Use this fact to show that

$$
\langle x|p|\psi\rangle = -i\hbar \frac{d\psi}{dx}(x) . \tag{5}
$$

What this means is that defining $p \simeq -i\hbar d/dx$ is equivalent to defining the state $|p\rangle$ by (3) — you can derive one statement from the other.

3. Permutation Operator

Consider an N-dimensional Hilbert space with orthonormal basis $\{|1\rangle, |2\rangle, \cdots, |N\rangle\}$ and define the permutation operator S such that $S|n\rangle = |n+1\rangle$ for $1 \leq n \leq N$ and $S|N\rangle = |1\rangle$.

(a) Show that the state

$$
|\lambda\rangle = \sum_{n=1}^{N} \lambda^{-n+1} |n\rangle \tag{6}
$$

is an eigenstate of S with eigenvalue λ as long as λ takes one of N allowed values. Find those allowed values.

- (b) Is S ever a Hermitian operator? If so, what are the values of N such that S is Hermitian?
- (c) In the orthonormal basis described, write S in matrix form for the cases of $N = 2$ and $N=3$.