
PHYS-4601 Homework 18 Due 16 Mar 2017

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Anharmonic Oscillator

Consider a particle moving in the potential

V (x) =
1

2
mω2x2 + gx3 , (1)

where g is considered to be small, so this potential can be treated as a perturbation of a
harmonic oscillator. Find the correction to the energy of the harmonic oscillator ground state
|0〉 at both first and second order in g.

2. Fermi’s Golden Rule

Consider a sinusoidal perturbation Hamiltonian H1 = V e−iωt +V †e+iωt. In the class notes, we
found the probability for a transition from state |1〉 to |2〉 as a function of time and frequency
ω. In the following, define ~ω0 = E2 − E1, the difference of the energy eigenvalues of the
unperturbed Hamiltonian H0. We will investigate the transition probability near ω = ω0 at
large t (at least as long as the probability stays small).

(a) At a fixed (and large) time, the probability is peaked at ω = ω0. Using L’Hospital’s rule
or just a power series expansion, find the peak transition probability as a function of time.

(b) Find the values of ω where the probability first vanishes on either side of ω = ω0. The
difference in these two values tells us the width of the peak.

(c) For large enough times, approximate the transition probability as a rectangle with the
peak value from part (a) and width given by half the difference in part (b). Integrate this
approximate probability function and argue that

P → 2π|V21|2

~2
tδ(ω0 − ω) (2)

as t→∞.

This problem shows two things: first, transitions occur only to states at energies related by the
perturbation frequency and, second, that there is a constant transition rate (probability per
unit time) to the appropriate states. The relationship (2) is known as Fermi’s Golden Rule.
(There is of course a more rigorous derivation possible.)

3. Magnetic Resonance Spin Flips

Consider a spin-1/2 particle (for example, a proton) with gyromagnetic ratio γ in the presence
of a magnetic field

~B = B0ẑ +B1 cos(ωt)x̂−B1 sin(ωt)ŷ (3)

at its fixed position. This is a magnetic field with a fixed z component and another component
rotating in the x, y plane.

(a) Write the Hamiltonian either as a matrix or in terms of spin operators and show that it
takes the form H = H0 + V e−iωt + V †eiωt.



(b) Assume that the rotating field B1 is much smaller than B0. If the spin is initially spin up
at t = 0, find the transition probability to spin down at a later time t using perturbation
theory. Hint: Consider the states in the Hamiltonian H0 and their energy differences first.

(c) It is also possible to find this transition probability exactly. With the initial conditions
given in part (b), the solution of the time-dependent Schrödinger equation is

〈+|Ψ(t)〉 = eiωt/2
[
cos (αt/2)− i(ω − γB0)

α
sin (αt/2)

]
〈−|Ψ(t)〉 = ie−iωt/2

γB1

α
sin (αt/2) (4)

with α =
√
γ2B2

1 + (ω − γB0)2. Now use Maple to verify that (4) solves the Schrödinger
equation. Input the Schrödinger equation and initial conditions as a list of equations and
then the solution above as another list. Then use the odetest function in Maple to check
that (4) solves the time-dependent Schrödinger equation. Include a copy of your Maple
code.

(d) Use (4) to find the transition probability from spin up (|+〉) to spin down (|−〉). Find the
conditions that this probability is one. Finally, show that it reduces to the perturbation
theory result when γB1 � ω − γB0.

4. Variational Principle for the Linear Well

Consider a particle moving in 1D in a potential V (x) = α|x|. Find the best possible upper
bound on the ground state energy using a gaussian trial wavefunction.
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