
PHYS-4601 Homework 17 Due 9 Mar 2017

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Not-Quite-Square Well

Consider a particle moving in a 1D well of potential{
V0x/a 0 < x < a
∞ otherwise

. (1)

Assume that ε = ma2V0/h̄
2 � 1. Recall that the energy eigenfunctions and eigenvalues are

ψn(x) =

√
2

a
sin

(
nπx

a

)
, En =

h̄2

2m

(
nπ

a

)2

, n = 1, 2, · · · . (2)

(a) Show that the first order contribution to the energy is E1
n = V0/2 for all n.

(b) Now consider the ground state of the system. Recalling that the first order correction to
the ground state can be written as

|ψ1
1〉 =

∞∑
n=2

cn|ψ0
n〉 , (3)

use Maple’s seq and int commands to make a list of the coefficients cn for n = 2, · · · 10.
Attach a copy of your Maple code. You should work in units where a = 1 and express
your answer in terms of the parameter ε.

(c) Use Maple to plot the uncorrected ground state wavefunction and the wavefunction with
first order terms (including corrections from the n = 2, · · · 10 states) on the same plot. In
order to see the difference, use an exaggerated value of ε = 3.

2. Stark Effect based on Griffiths 6.36

The presence of an external electric field E0ẑ shifts the energy levels of a hydrogen atom,
which is called the Stark effect. Consider the hydrogen atom to be described by the Coulomb
potential; the external electric field introduces a perturbation

H1 = eE0z = eE0r cos θ . (4)

We have already seen on homework that the expectation value of this Hamiltonian in the
ground state n = 1 vanishes, so there is no shift in the ground state energy. In this problem,
we consider the degenerate perturbation theory of the n = 2 states. As spin does not enter, do
not consider it in this problem.

(a) The four states |2, 0, 0〉, |2, 1, 0〉, and |2, 1,±1〉 are degenerate at 0th order. Label these
states sequentially as i = 1, 2, 3, 4. Show that the matrix elements Wij = 〈i|H1|j〉 form
the matrix

W = −3aeE0


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (5)



where empty elements are zero and a is the Bohr radius. Hint : Note that Lz commutes
with H1, so only states with the same quantum number m can have nonzero matrix
elements; this will save you quite a bit of work. Then use the angular wavefunctions to see
that all the diagonal elements of W must vanish. Finally, use the explicit wavefunctions
to evaluate the remaining matrix elements of W (there should only be one independent
one left).

(b) Diagonalize this matrix to show that |±〉 = (1/
√

2)(|2, 0, 0〉 ± |2, 1, 0〉) are eigenstates of
W . Find the first order shift in energies of |±〉. Hint : Note that the corrected eigenstates
may still have contributions from other values of the principal quantum numbers n, but
that doesn’t quite matter.

(c) Finally, show that the states |±〉 have a nonzero dipole moment pz = −e〈z〉 and calculate
it. You should not need to do any more calculations; just use your answer from part (b).

3. Weak-Field Zeeman Effect

In the class notes, we stated that placing a hydrogen atom in a constant magnetic field B0ẑ
introduces a contribution to the hydrogen atom of H1 = (e/2m)B0(Lz + 2Sz). If this contribu-
tion is larger than the energy level splitting due to fine structure, this gives the “strong-field”
Zeeman effect that we discussed in class. In this problem, consider the opposite limit, in which
H1 is smaller than the fine structure splitting. In this case, we include the fine structure
corrections in the “unperturbed” Hamiltonian H0 and treat H1 as the perturbation to that.

(a) With fine structure included, the eigenstates of H0 are identified by n, total angular mo-
mentum quantum number j, its z component mj , and the total orbital angular momentum
quantum number ` (as well as total spin s = 1/2); the z-components m` and ms are not
good quantum numbers. Write H1 = (e/2m)B0(Jz + Sz) since ~J = ~L+ ~S and show that
the change in energy due to B0 is

E1
n,j,mj ,` = − eh̄

2mc
B0mj

[
1± 1

2`+ 1

]
. (6)

To do this, you will need to know that the eigenstate of J2, Jz, and L2 is written

|j = `± 1/2,mj , `〉 =

√
`∓mj + 1/2

2`+ 1
|`,m` = mj + 1/2,ms = −1/2〉

±

√
`±mj + 1/2

2`+ 1
|`,m` = mj − 1/2,ms = 1/2〉 (7)

in terms of the eigenstates of L2, Lz, and Sz. Hint: It may be useful to note that
[H0, Jz] = [H1, Jz] = 0.

(b) The quantity in square brackets in (6) is called the Landé g factor. Show that the g factor
can also be written as [

1 +
j(j + 1)− `(`+ 1) + 3/4

2j(j + 1)

]
, (8)

which is the form given in Griffiths. You can start with (8) and try j = `± 1/2 separately
to get the form given in (6).
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