PHYS-4601 Homework 10 Due 1 Dec 2016

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

- 1. Rotations parts of Griffiths 4.56
 - (a) Argue that $\exp[i\varphi L_z/\hbar]$ is a rotation around the z axis by showing that

$$e^{i\varphi L_z/\hbar} \cdot \psi(\phi) = \psi(\phi + \varphi) \tag{1}$$

for any angular wavefunction $\psi(\phi)$ that can be written as a Taylor series around ϕ . *Hint*: Use the identification that $L_z = -i\hbar\partial/\partial\phi$ and write both sides as a power series.

As a result, the angular momentum operators are called the *generators* of rotations. In general, $\hat{n} \cdot \vec{L}/\hbar$ generates rotations around the unit vector \hat{n} . Furthermore, the rotations of spinors are generated by the spin angular momentum operators.

- (b) What is the 2×2 matrix corresponding to a rotation of 2π around the z axis for spin 1/2? How does it compare to what you expected?
- (c) Construct the 2 × 2 matrix corresponding to a rotation of π around the x axis for spin 1/2. Show that it takes the S_z eigenstate $|+\rangle$ into $|-\rangle$.

2. Hadron Spins Griffiths 4.35 plus

Quarks are elementary particles with spin 1/2, which we see in bound states called *hadrons*. Hadrons come in two varieties. In the following, assume that the quarks have zero orbital angular momentum.

- (a) *Mesons* are formed of a quark and antiquark (think of it as two quarks). What are the possible total spin quantum numbers of a meson?
- (b) *Baryons* are formed of three distinct quarks. What are the possible total spin quantum numbers? How many complete sets of states are there for each of those total spins?

3. Spin Interactions

(a) Two spin 1/2 particles are fixed in position but have interacting spins. Their Hamiltonian is

$$H = J\vec{S}^{(1)} \cdot \vec{S}^{(2)} \tag{2}$$

for some constant J. Here $S^{(i)}$ is the spin operator of the *i*th particle. Find the energy eigenvalues of this system, their degeneracies, and the corresponding eigenstates. *Hint*: You will want to work in terms of the total spin quantum numbers.

(b) The two spins have the same gyromagnetic ratio γ . In the presence of a magnetic field, the Hamiltonian becomes

$$H = J\vec{S}^{(1)} \cdot \vec{S}^{(2)} - \gamma \vec{B} \cdot \left(\vec{S}^{(1)} + \vec{S}^{(2)}\right) .$$
(3)

Now find the energy eigenvalues and their degeneracies. You may take \vec{B} to lie along the z direction.

(c) Suppose that initially the first spin is up, while the second spin is down (ie, $|+\rangle$ and $|-\rangle$ respectively). What is the probability of finding the first spin up at a later time t? If both spins are initially up, what is the probability?