Quantum Mechanics I PHYS-3301 Final Exam

Dr. Andrew Frey

11 April 2017, 1:30-4:30PM, 2C11

Instructions:

- Do not turn over until instructed. You will have 3 hours to complete this exam.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS ABOUT THE QUESTIONS WILL GO HERE.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Concepts & Formulae:

- Physical Constants
 - Speed of light $c = 3 \times 10^8$ m/s = 1 lightsecond/second = 1 lightyear/year
 - Planck constant $h = 2\pi\hbar = 7 \times 10^{-34}$ Js
 - Boltzmann constant $k_B = 10^{-23} \text{ J/K}$
- Quantum Mechanics
 - Hydrogen wavefunctions are described by n,ℓ,m and will be given if needed Energy levels are $E=-13.6~{\rm eV}/n^2$
 - Spherical harmonics will be given if needed
 - Momentum space wavefunction $\tilde{\psi}(p)$ with $p \cdot \tilde{\psi} = p \tilde{\psi}, x \cdot \tilde{\psi} = i \hbar d \tilde{\psi} / dp$

$$\tilde{\psi}(p) = \int \frac{dx}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar} \psi(x) \ , \ \ \psi(x) = \int \frac{dp}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \tilde{\psi}(p)$$

- Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein distributions

$$n_{MB}(E) = e^{-(E-\mu)/k_BT}$$
, $n_{FD}(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1}$, $n_{BE}(E) = \frac{1}{e^{(E-\mu)/k_BT} - 1}$

– Free particles: $E_k = \hbar^2 \vec{k}^2/2m$ with degeneracy $d_k = (sV/2\pi^2)k^2dk$ where s =number of polarizations

• Galilean Relativity/Newtonian Mechanics

- Galilean boost $\vec{x}' = \vec{x} \vec{v}t$, $\vec{u}' = \vec{u} \vec{v}$, $\vec{p}' = \vec{p} m\vec{v}$, $k' = k \vec{p} \cdot \vec{v} + (1/2)mv^2$
- Kinetic energy for many particles $K = K_{int} + (1/2)MV^2$

$$M = \sum m_i , \quad \vec{V} = \frac{1}{M} \sum m_i \vec{u}_i$$

- For two particles $K_{int} = (1/2)\mu u^2$ for relative velocity \vec{u} and reduced mass $\mu = m_1 m_2/M$

- 4-vectors and Lorentz transformations
 - The position 4-vector is x^{μ} with $x^0 = ct$.

- The metric $\eta_{\mu\nu}$ can be written as a diagonal matrix with diagonal elements -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 and the invariant interval is $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -c^2 dt^2 + d\vec{x}^2 = -c^2 d\tau^2$.
- The Lorentz boost transformations (in standard configuration) are

$$t' = \gamma(t - vx/c^2)$$
, $x' = \gamma(x - vt)$, $y' = y$, $z' = z$, $\gamma = 1/\sqrt{1 - v^2/c^2}$.

They can be written as $x^{\mu'} = \Lambda^{\mu'}{}_{\nu}x^{\nu}$

- Lowered indices $a_{\mu} = \eta_{\mu\nu} a^{\nu}$ (both in frame S)
- Relativistic dot product $a \cdot b = \eta_{\mu\nu}a^{\mu}b^{\nu} = a_{\mu}b^{\mu} = -a^{0}b^{0} + \vec{a} \cdot \vec{b}$
- Tensor transformation $T_{\mu'\dots}{}^{\nu'\dots} = (\Lambda^{\alpha}{}_{\mu'}\dots)(\Lambda^{\nu'}{}_{\beta}\dots)T_{\alpha\dots}{}^{\beta\dots}$
- Velocities and Momenta
 - For normal velocity $\vec{u} = d\vec{x}/dt$, the Lorentz transformation in standard configuration is

$$u'_x = \frac{u_x - v}{1 - v u_x/c^2}$$
, $u'_{y,z} = \frac{u_{y,z}}{\gamma(v)(1 - v u_x/c^2)}$.

- 4-velocity: $U^{\mu} = dx^{\mu}/d\tau$, where τ is proper time along the worldline. $U^{0} = \gamma c$, $\vec{U} = \gamma d\vec{x}/dt$, $d\vec{x}/dt = c(\vec{U}/U^{0})$.
- 4-momentum is $p^{\mu} = mU^{\mu}$. Energy $E = cp^0$ and momentum is the spatial part \vec{p} .
- $U_{\mu}U^{\mu} = -c^2$ and $p_{\mu}p^{\mu} = -m^2c^2$ for a normal massive particle.
- The Doppler effect, in terms of the rest frame of the receiver, is

$$\frac{\omega_R}{\omega_E} = \frac{\sqrt{1 - u_E^2/c^2}}{1 - \hat{k} \cdot \vec{u}_E/c}$$

where \hat{k} is the direction of travel of light and \vec{u}_E is the velocity of emitter relative to receiver.

• Math

- Polar coordinates $d^3 \vec{x} = r^2 \sin \theta dr d\theta d\phi$
 - The region $-\infty < x, y, z < \infty$ is $0 < r < \infty, 0 < \theta < \pi, 0 < \phi < 2\pi$
- Exponential integrals (for $n = 0, 1, \dots$ and a > 0)

$$\int_0^\infty dx \, x^n e^{-x/a} = n! a^{n+1}$$

- Gaussian integrals

$$\int_{-\infty}^{\infty} dx \, e^{-ax^2} = \sqrt{\frac{\pi}{a}} \, , \quad \int_{-\infty}^{\infty} dx \, x^2 e^{-ax^2} = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

- Hyperbolic trig functions: $d \cosh \theta / d\theta = \sinh \theta$, $d \sinh \theta / d\theta = \cosh \theta$

 $\cosh^2 \theta - \sinh^2 \theta = 1$, $\cosh^2 \theta + \sinh^2 \theta = \cosh(2\theta)$, $2\sinh\theta\cosh\theta = \sinh(2\theta)$

- Binomial expansion $(1+x)^n \approx 1 + nx$ for $x \ll 1$