PHYS-2106 Winter Homework 9 Due 20 Mar 2017

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

Hint: You will want to remind yourself about integration by parts and other integration tricks (like differentiation with respect to parameters of the integral) for this assignment.

1. Some Fourier Transforms

Find the Fourier transforms $\tilde{f}(k)$ for each of the following functions f(x). $\Theta(x)$ is the Heaviside step function.

- (a) $f(x) = x\Theta(a |x|)$
- (b) $f(x) = (a |x|)\Theta(a |x|)$
- (c) $f(x) = x \exp(-x^2/2\sigma^2)$ *Hint:* See the example in RHB equation (13.7) and use properties of the Fourier transform.
- 2. Integrals from the Inverse Transform and Parseval's Theorem inspired by Boas & Arfken-Weber
 - (a) First, find the Fourier transform $\tilde{f}(k)$ of the function $f(x) = \exp(-\alpha |x|)$.
 - (b) Now, use the inverse transform $f(x) = \mathcal{F}^{-1}[\tilde{f}](x)$ to show that

$$\int_0^\infty dk \, \frac{\cos(kx)}{k^2 + \alpha^2} = \frac{\pi}{2\alpha} e^{-\alpha|x|} \ . \tag{1}$$

(c) Finally, use Parseval's theorem for the Fourier transform to evaluate $\int_{-\infty}^{\infty} dk \, 1/(\alpha^2 + k^2)^2$.

3. Impedance

In an alternating-current circuit, the current and potential obey a generalized form of Ohm's law $\tilde{V}(\omega) = \tilde{I}(\omega)Z(\omega)$ for each frequency, where $Z(\omega)$ is known as the *impedance*. Since this multiplicative relationship is valid for the variables as a function of frequency and *not* time, it is really a relation between the Fourier transforms of potential and current (time t and frequency ω are Fourier conjugate variables, like x and k).

The impedance of a circuit with resistance R, inductance L, and capacitance C is $Z(\omega) = R + i(L\omega - 1/C\omega)$.

- (a) If the capacitance $C \to \infty$, show that $V(t) = RI(t) + L\dot{I}(t)$, where the dot is a time derivative.
- (b) If R = 0 and L = 0, show that $I(t) = C\dot{V}(t)$.

4. Convolution

As we discussed in class, the picture g(x) of some image function taken by a measuring device is the convolution of the device's transfer function K(x) with the true image f(x):

$$g(x) = \int_{-\infty}^{\infty} dy f(y) K(x-y) .$$
⁽²⁾

In this problem, suppose that the transfer function is $K(x) = \exp(-\alpha |x|)$.

- (a) Suppose that the true image is a single point $f(x) = \delta(x)$. What is the picture function taken by the device?
- (b) Using your result from question 2(a) and the convolution theorem, show that the true image f(x) that yields the picture g(x) is $f(x) = \alpha g(x)/2 g''(x)/2\alpha$, where a prime is a derivative with respect to x.