PHYS-2106 Winter Homework 8 Due 13 Mar 2017

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

Hint: You will want to remind yourself about integration by parts and trigonometric identities (like angle addition formulas, etc) for this assignment.

1. Simple Fourier Series

Fourier series are unique, so you can find Fourier series without using integrals to compute the Fourier coefficients in some cases. Find the following Fourier series; these all have a finite number of terms.

- (a) The cosine series for $f(x) = \cos^2(x)$ as a function of period 2π .
- (b) The complex exponential series for $f(x) = \cos(4x) \sin^3(x)$ as a function of period 2π .

2. Sums from Parseval's Theorem inspired by Boas & Spiegel

Parseval's theorem is another way of determining an infinite sum by using a Fourier series. In this problem, you will first calculate the requested *complex exponential* Fourier series and then use Parseval's theorem to compute the requested sums.

- (a) Find the complex Fourier series for the *full-wave rectifier* function $f(x) = |\sin(x)|$ for $-\pi < x < \pi$.
- (b) Use Parseval's theorem and your previous result to calculate $\sum_{k=1}^{\infty} (2k+1)^{-2} (2k-1)^{-2}$.
- (c) Find the complex Fourier series for the function $f(x) = x^2$ on the interval -1 < x < 1.
- (d) Use Parseval's theorem and your previous result to find $\sum_{n=1}^{\infty} n^{-4}$.

3. Finite Wavetrain

Find the Fourier transform of the function $f(x) = e^{ik_0x}\Theta(N\pi/k_0 - |x|)$, where $\Theta(y)$ is the Heaviside step function. Assuming that N is an integer (so that the wavetrain consists of N periods of the plane wave), for what values of k does $\tilde{f}(k) = 0$?

4. Practice Problems (NOT GRADED)

For your own practice, the following problems from the course textbooks are useful (and mostly have solutions in the texts):

Spiegel problems 7.26-31, 8.15-16, 9.28-31, 39-41, 43

Unfortunately, I have not found any solved problems that we have not already done regarding Gaussian integrals or change of basis in linear algebra. I advise reviewing your notes and homework.