Mathematical Physics II PHYS-2106 First In-Class Test

Dr. Andrew Frey

$3 \ {\rm Feb} \ 2017$

Instructions:

- Do not turn over until instructed.
- You will have 50 minutes to complete this test.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS REGARDING TEST LENGTH WILL GO HERE.
- Answer all questions briefly and completely.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Formulae

- $\delta_{ij} = 1$ for i = j, = 0 for $i \neq j$; $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = -\epsilon_{213} = -\epsilon_{132} = -\epsilon_{321} = 1$, other components zero
- Matrix relations in terms of elements in some basis

$$(A^T)_{ij} = A_{ji}, (A^{\dagger})_{ij} = A_{ji}^*$$

- $(A + B)_{ij} = A_{ij} + B_{ij}, (AB)_{ij} = A_{ik}B_{kj}$
- Inner product of column vectors $x^{\dagger}Gy = x_i^*G_{ij}y_j$; for orthonormal basis $x^{\dagger}y = x_i^*y_i$.
- Trace: defined as $tr(A) = A_{ii}$; linear tr(A + B) = tr(A) + tr(B); cyclic tr(AB) = tr(BA)
- Determinant:
 - = sum of element times cofactor along any row or down any column
 - $-\det(A^T) = \det(A), \ \det(A^{\dagger}) = \det(A^{\widetilde{*}}) = \det(A)^*, \ \det(\lambda A) = \lambda^N \det(A), \ \det(AB) = \det(A) \det(B)$
 - Changes sign if you reverse two rows or columns
 - Unchanged if you add a multiple of one row (column) to another row (column)

• General formula for inverse:
$$A^{-1} = \operatorname{cof}(A)^T / \det(A); \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- Eigenvalues/eigenvectors: characteristic equation $det(\lambda 1 A) = 0$
- Types of matrices
 - (anti)symmetric $A^T = \pm A$, orthogonal $A^T = A^{-1}$
 - (anti-)Hermitian $A^{\dagger} = \pm A$, unitary $A^{\dagger} = A^{-1}$