
PHYS-4601 Homework 17 Due 3 Mar 2016

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. White Dwarfs based on Griffiths 5.35

White dwarfs are old, dead stars that don’t support nuclear fusion any more. Instead, electron
degeneracy pressure keeps them from collapsing into black holes. In this problem, you’ll work
out the white dwarf radius by finding the minimum energy. Note: You will need equation [5.45]
from Griffiths.

(a) Imagine that the white dwarf is a sphere of uniform density. Caculate the gravitational
potential energy V in terms of its radius R, total mass M , and Newton’s constant G.
Hint : To do this, work out the potential energy of a shell of thickness dr at radius r,
which comes from the sphere of matter inside that shell. Then integrate from r = 0→ R.
You should find V = −3GM2/5R.

(b) Now treat the electrons as a free electron gas. Write their total energy (which is kinetic)
in terms of M , R, the electron mass m, the nucleon mass mN , the number of electrons
per nucleon q, and ~. Then add this to the result of part (a) to get the total energy and
find the radius R where the energy is minimized.

(c) Assuming q ≈ 1/2 (the average nucleus is a helium nucleus), find the radius (in km) of a
white dwarf with the mass of the sun. You will need G = 7×10−11 m3/kg/s2, ~ = 1×10−34

Js, m = 9× 10−31 kg, mN = 2× 10−27 kg, and M = 2× 1030 kg.

(d) A neutron star is an extremely dense star where all the matter is neutrons, which is
supported against collaps by the degeneracy pressure of the neutrons. In this case, q = 1.
Find the ratio of the radius of a neutron star to the radius of a white dwarf of the same
mass (assume q ≈ 1 for the white dwarf), both in terms of physical constants and as a
pure number to 1 significant digit.

2. Bloch’s Theorem

In class, we stated Bloch’s theorem as saying that any stationary state wavefunction of a
periodic potential V (x+ a) = V (x) can be written to satisfy the condition

ψ(x+ a) = eiKaψ(x) (K real) . (1)

Alternately, Bloch’s theorem can state that any stationary state wavefunction of the same
potential can be written as

ψ(x) = eiKxu(x) where u(x+ a) = u(x) . (2)

(a) Show that these two formulations are equivalent (that is, show that if ψ satisfies (1) then
it satisfies (2) and vice-versa).

(b) If you write u(x) =
∑

q cqe
iqx as a Fourier series, what are the allowed values of q?

Therefore, what are the allowed values of the momentum for a wavefunction with a given
K?



3. Specific Heat of the Free-Electron (Fermi) Gas

In this problem, you’ll explore the thermal properties of the electrons in a simple metal. Recall
that the total number of electrons and total energy of the gas (on average) are

N =
∑
states

f

(
ε− µ
T

)
, U =

∑
states

εf

(
ε− µ
T

)
, f(x) =

1

ex + 1
. (3)

Here, T is the temperature, and µ is the chemical potential. For free electrons in volume V ,
the energy of each state is ε = ~2k2/2m in terms of the wavevector magnitude k, and there are
(V k2/π2)dk states at that energy. It is a good approximation to replace the sum over states
with integrals to define the number and energy densities

n =
1

π2

∫ ∞
0

dk k2f(x) , ρ =
~2

2mπ2

∫ ∞
0

dk k4f(x) , x =
1

T

(
~2k2

2m
− µ

)
. (4)

In this problem, you will find the specific heat of the free electron gas at low temperatures,
which is defined as

cV =
dρ

dT
with

dn

dT
= 0 . (5)

Work only to lowest order in the temperature.

(a) Argue that you can approximate∫ ∞
0

dk k2g(x) =
T

2µ

(
2mµ

~2

)3/2 ∫ ∞
−∞

dx g(x) (6)

for x = (ε− µ)/T and any function g(x) as T → 0. Be careful with limits of integration.

(b) Use conservation of particle density dn/dT = 0 to show that dµ/dT → 0 as T → 0. Hint:
Use your previous results and also the fact that df/dx is an even function of x.

(c) Show that

cV =
mT

~3π2
√

2mµ

∫ ∞
−∞

dxx2
df

dx
, (7)

where the x integral is a pure number. To lowest order, you may set dµ/dT → 0 as follows
from part (b).

(d) Finally, at T = 0, µ = EF , the Fermi energy, as discussed in class. Therefore argue that
cV ∝ Tn1/3.

4. Bose-Einstein Condensation from Griffiths 5.29

Consider the Bose-Einstein distribution for spin-0 bosons. As for fermions (see equation (4)),
we can usually approximate the sum over states as an integral over wavevectors:

n =
1

2π2

∫ ∞
0

dk k2f(x) , ρ =
~2

4mπ2

∫ ∞
0

dk k4f(x) , x =
1

T

(
~2k2

2m
− µ

)
, (8)

where the factor of two difference is due to the fact that there is only one spin state and where
now f is the Bose-Einstein distribution f(x) = 1/(ex − 1).

Consider the case that µ = 0. If there is a fixed number density n of bosons, this occurs at a
fixed critical temperature Tc; µ < 0 for higher temperatures, and the integral approximation
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above fails for lower temperatures because all the bosons go into the ground state (Bose-Einstein
condensation). Find Tc as a function of n. Hint: the integral∫ ∞

0
dx

xs−1

ex − 1
= Γ(s)ζ(s) , (9)

in terms of the gamma function and Riemann zeta function. You may write your answer in
terms of these functions (that is, you don’t need to give the numerical value for those functions).

Page 3


