PHYS-4601 Homework 10 Due 26 Nov 2015

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

- 1. Commutators and Things partly from Griffiths 4.19, partly inspired by problems in Ohanian
 - (a) Find the commutators $[L_z, x]$, $[L_z, y]$, $[L_z, p_x]$, and $[L_z, p_y]$.
 - (b) Show that $\langle x \rangle = 0$ and $\langle p_x \rangle = 0$ for any eigenstate of L_z .
 - (c) Show that $[L_z, H] = 0$ for Hamiltonian $H = \bar{p}^2/2m + V$ with central potential V. Argue that therefore $[\vec{L}^2, H] = 0$ also. *Hint:* Assume V(r) is a power series; then argue L_z and r commute based on $[L_z, r^2]$.
 - (d) Find the uncertainty relation for the operators L_z and $\sin \phi$.

2. Probabilities and Expectations based on problems by Ohanian

Some particle has a wavefunction

$$\psi(\vec{x}) = \frac{1}{4}\sqrt{\frac{5}{\pi}}\sin^2\theta \left[1 + \sqrt{14}\cos\theta\right]\cos(2\phi)R(r) , \qquad (1)$$

where R is normalized $(\int_0^\infty dr r^2 |R|^2 = 1).$

- (a) If you measure the total orbital angular momentum \vec{L}^2 , what are the possible values you would find and the probabilities you would measure each value?
- (b) Find $\langle L_x \rangle$, $\langle L_y \rangle$, and $\langle L_z \rangle$ in this state.
- (c) Find the uncertainty of L_z .

3. Angular Dependence of Spherical Harmonic Oscillator

Consider a 3D isotropic harmonic oscillator (potential $V(\vec{x}) = (1/2)m\omega^2 r^2$). Recall from a previous assignment that separation of variables in Cartesian coordinates allows us to write the eigenstates as $|n_x, n_y, n_z\rangle = (1/\sqrt{n_x!n_y!n_z!})(a_x^{\dagger})^{n_x}(a_y^{\dagger})^{n_y}(a_z^{\dagger})^{n_z}|0\rangle$.

- (a) Write the wavefunctions for the three states with one excitation in Cartesian coordinates. That is, find $\langle \vec{x}|1,0,0\rangle$, $\langle \vec{x}|0,1,0\rangle$, and $\langle \vec{x}|0,0,1\rangle$.
- (b) Convert those wavefunctions into spherical coordinates and write them as superpositions of terms of the form (radial function) \times (spherical harmonic).
- (c) Write L_z in terms of the Cartesian harmonic oscillator ladder operators $(a_x, a_x^{\dagger}, \text{ etc})$. Then use ladder operator techniques to show that $(|1, 0, 0\rangle \pm i|0, 1, 0\rangle)/\sqrt{2}$ and $|0, 0, 1\rangle$ are eigenstates of L_z and find their eigenvalues. Verify that your answers are consistent with the wavefunctions you found in part (b).