PHYS-3301 Winter Homework 2 Due 20 Jan 2016

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

Helpful Formulae: The following may be useful:

$$\int_0^\infty dx \, x^n e^{-x/a} = n! \, a^{n+1} \quad (a > 0, \ n = 0, 1, 2, \cdots) \tag{1}$$

$$\int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ik(x-x')} = \delta(x-x') \tag{2}$$

$$\int_{-\infty}^{\infty} dx \, x^{2n} e^{-b^2 x^2} = \sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{1}{2b}\right)^{2n+1} \quad (\operatorname{Re}b > 0) \; . \tag{3}$$

(4)

1. Position and Momentum Operators in Momentum Space

For a particle moving on the real line $(-\infty < x < \infty)$ with wavefunction $\psi(x)$, the "momentum space wavefunction" is

$$\tilde{\psi}(p) = \int_{-\infty}^{\infty} dx \,\psi_p(x)^* \psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx \,e^{-ipx/\hbar} \psi(x) \,. \tag{5}$$

- (a) If the position operator acts on a wavefunction $\psi(x)$, it returns the wavefunction $x\psi(x)$. Show that the momentum space wavefunction corresponding to this is $i\hbar d\tilde{\psi}/dp$.
- (b) If the momentum operator acts on a wavefunction $\psi(x)$, it returns the wavefunction $-i\hbar d\psi/dx$. Show that the momentum space wavefunction corresponding to this is $p\tilde{\psi}(p)$.

2. Normalization and Expectation Values

In this problem, $\tilde{\psi}$ will still represent the momentum space wavefunction as in equation (5).

(a) Show that normalization of the momentum space wavefunction implies normalization of the position space wavefunction. That is, show

$$\int_{-\infty}^{\infty} dp \, |\tilde{\psi}(p)|^2 = 1 \quad \Rightarrow \quad \int_{-\infty}^{\infty} dx \, |\psi(x)|^2 = 1 \,. \tag{6}$$

Hint: Substitute two factors of $\tilde{\psi}$ from equation (5) using different dummy integration variables. Then use the definition of the delta function (2).

- (b) Suppose the wavefunction is a normalized Gaussian $\psi(x) = (2a/\pi)^{1/4} \exp(-ax^2)$. Find the momentum space wavefunction. *Hint:* Combine exponentials in equation (5) and complete the square in the exponent. Then shift integration variables to get a Gaussian integral.
- (c) The expectation value $\langle p^2 \rangle$ can be calculated in two ways:

$$\langle p^2 \rangle = -\hbar^2 \int_{-\infty}^{\infty} dx \,\psi^*(x) \frac{d^2 \psi}{dx^2} \text{ or } \langle p^2 \rangle = \int_{-\infty}^{\infty} dp \, p^2 |\tilde{\psi}(p)|^2 \,. \tag{7}$$

Use your results from the previous part to show that these are equal for the Gaussian wavefunction.

3. Spherical Harmonics

You may want to consult table 6.1 on page 132 of Scherrer.

- (a) Write the function $\cos(2\theta)$ in terms of spherical harmonics.
- (b) Is $\cos(2\theta)$ an eigenfunction of L_z or \vec{L}^2 (or both)? Give the eigenvalue for any operator for which it is an eigenfunction.
- (c) Find the probability that an electron in the $n = 3, \ell = 0, m = 0$ state of hydrogen is found in the first octant of space (that is, is located in the region with x > 0, y > 0, z > 0). Then find the probability if the electron is in the $n = 2, \ell = 1, m = 1$ state.