PHYS-3301 Homework 9 Due 12 Nov 2014

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. You may email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. GZK Cut-off

The universe is filled with photons left over from the Big Bang which have a typical energy 2.5×10^{-4} eV. This is called the cosmic microwave background (CMB) radiation. Suppose a proton of energy E and mass m_p hits a typical CMB photon head-on. What is the minimum value of E required to convert the photon to a pion of mass m_{π} ? In other words, how large must E be for the reaction $p + \gamma \rightarrow p + \pi^0$ to occur? Use $m_p = 938 \text{ MeV}/c^2$ and $m_{\pi} = 135 \text{ MeV}/c^2$ and assume that $m_p \ll E$. FYI, Greisen, Zatsepin, and Kuzmin predicted that protons of higher energies cannot travel for extremely long distances through the universe because they lose energy to pion production in this way.

2. Inverse Compton Scattering

A photon of energy ϵ strikes an electron of energy E and mass m head on (that is, the spatial parts of their momenta are opposite each other). Call the initial 4-momentum of the photon q^{μ} and of the charged particle p^{μ} .

- (a) Suppose that the final photon moves back along the original photon's path. Find the energy ϵ' of the final photon.
- (b) Suppose E is very large, so you can ignore the electron mass. Use your answer from part (a) to show that $\epsilon' = E$ in this limit. (This shows that "inverse Compton scattering" can increase photon energies, since the photon steals essentially all the electron's energy.)

3. **3-Body Kaon Decay** essentially Barton 11.3(a)

A K particle (*aka* a "kaon") of mass $M = 494 \text{ MeV}/c^2$ can decay into three identical π particles ("pions") of mass $m = 140 \text{ MeV}/c^2$. Suppose that a resting kaon decays with one of the final pions also at rest. First, argue that the other two pions have the same energy. Then find that energy (in terms of m and M and in terms of MeV).

4. Tachyons

Lorentz symmetry is actually consistent with particles, called *tachyons*, that travel faster than the speed of light ("tachy" is a Greek root meaning "fast").

- (a) Define the tachyonic 4-momentum with the energy and spatial momentum in the usual components such that $p_{\mu}p^{\mu} = +m^2c^2$ (the opposite sign from usual). Find the speed v as a function of energy and the tachyonic mass m and show that $v \to c$ as $E \to \infty$. Assume the usual relationship $v/c = |\vec{p}|/p^0$.
- (b) Suppose an electron a normal massive particle with mass M starts at rest and emits a tachyon with tachyonic mass m (so the final state is an electron plus a tachyon). Find the final tachyon and electron energies and show that the electron gains energy. This is an example of why tachyons are considered instabilities in particle physics; they can cause "spontaneous acceleration" of particles.