PHYS-3301 Homework 6 Due 22 Oct 2014

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. You may email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Boosts and Rotations

In matrix form, we can define the boost Λ_{tx} along x and the rotation Λ_{xy} in the xy plane (around the z axis) as follows:

$$\Lambda_{tx}(\phi) = \begin{bmatrix} \cosh \phi & -\sinh \phi & \\ -\sinh \phi & \cosh \phi & \\ & & 1 \\ & & & 1 \end{bmatrix}, \quad \Lambda_{xy}(\theta) = \begin{bmatrix} 1 & & \\ \cos \theta & \sin \theta & \\ -\sin \theta & \cos \theta & \\ & & & 1 \end{bmatrix}.$$
(1)

Empty elements in the matrices above are zero.

(a) In matrix form, the metric $\eta_{\mu\nu}$ is

$$\eta = \begin{bmatrix} -1 & & \\ & 1 & \\ & & 1 & \\ & & & 1 \end{bmatrix} .$$
 (2)

Show that both rotation and boost in (1) satisfy the condition $\eta_{\mu\nu} = \Lambda^{\alpha}{}_{\mu}\Lambda^{\beta}{}_{\nu}\eta_{\alpha\beta}$, which is $\eta = \Lambda^{T}\eta\Lambda$ in matrix notation.

- (b) Consider two successive boosts along x, $\Lambda_{tx}(\phi_1)$ and $\Lambda_{tx}(\phi_2)$. Show that these multiply to give a third boost $\Lambda_{tx}(\phi_3)$ and find ϕ_3 . Using the relationship $v/c = \tanh \phi$ between velocity and rapidity ϕ , reproduce the velocity addition rule. *Hint:* You will need the angle-addition rules for hyperbolic trig functions.
- (c) First, write down the Lorentz transformation matrix $\Lambda_{ty}(\phi)$ corresponding to a boost along the y direction by permuting axes. Then show that you can get a boost along y by rotating axes, boosting along x, then rotating back by proving that $\Lambda_{ty}(\phi) = \Lambda_{xy}(-\pi/2)\Lambda_{tx}(\phi)\Lambda_{xy}(\pi/2)$.

2. 4-Vectors and Changing Frames

For parts (a,b) define a 4-vector U^{μ} to have components $U^0 = \cosh \phi$, $U^1 = \sinh \phi$, $U^2 = U^3 = 0$ in some reference frame S.

- (a) Now boost to reference frame S' which has velocity $v = c \tanh \theta$ along the x direction relative to S. What are the components of U^{μ} in S'? Write your answer in terms of the "angle" $\phi \theta$.
- (b) If $\phi \theta$ is itself a rapidity, write the associated velocity in terms of $\tanh \theta$ and $\tanh \phi$.

In parts (c)-(e), a^{μ} and b^{μ} are both timelike.

- (c) If a^{μ} is timelike, show that there exists an inertial frame S where the only nonzero component is a^0 (that is, the spatial part \vec{a} is zero).
- (d) Without using explicit Lorentz transformations, show that $|a^0|$ is minimized in the frame S defined in part (c).

- (e) from the text by Hartle Show that $a \cdot b = -\sqrt{a^2 b^2} \gamma$, where γ is the relativistic γ factor for the Lorentz transformation between the frame S where the spatial part of a^{μ} is zero and the frame S' where the spatial part of b^{μ} is zero.
- (f) Some component of the 4-vector k^{μ} is zero in every inertial reference frame. Show that k^{μ} is the zero vector.

3. Some Scalar Products

In some frame, the components of two 4-vectors are

$$a^{\mu} = (2, 0, 0, 1) \text{ and } b^{\mu} = (5, 4, 3, 0) .$$
 (3)

inspired by a problem in Hartle

- (a) Find a^2 , b^2 , and $a \cdot b$.
- (b) Does there exist another inertial frame in which the components of a^{μ} are (1,0,0,1)? What about b^{μ} ? Explain your reasoning.

Now consider lightlike 4-vectors a^{μ} and b^{μ} .

- (c) If a^{μ} and b^{μ} are orthogonal $(a \cdot b = 0)$, prove that they are parallel $(a^{\mu} \propto b^{\mu})$.
- (d) Is the 4-vector $a^{\mu} + b^{\mu}$ spacelike, timelike, or lightlike?