Gauge Fields & Strings Homework 3 Due 23 Oct 2013

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. You may instead email a PDF (prepared with LaTeX) to Dr. Frey.

- 1. Nonabelian Gauge Transformation Srednicki 69.1
- 2. Quadratic Casimir Srednicki 69.2

The combination T^aT^a , which commutes with all generators, is known as the quadratic Casimir of the representation.

3. The Little Group and String States

Consider a massless particle with momentum $p^+ \neq 0, p^- = p^I = 0$. The Lorentz transformations that leave these conditions invariant are called the *little group* of the particle. In this case, the little group consists of the boost along x^1 and the rotations among the transverse directions $x^{2,\dots D-1}$.

(a) Show that the states of a photon (which is massless) transform as a vector under the little group rotations. See chapter 10 if necessary. Note that if one polarization exists, a little group rotation transforms it into another polarization.

Now imagine a massless particle with states that transforms as a rank 2 tensor under the little group. This tensor can be split into an antisymmetric part $A^{IJ}(=-A^{JI})$, a symmetric traceless part $S^{IJ}(=S^{JI}, S^{II}=0)$, and a trace part $\Phi^{IJ} = \Phi \delta^{IJ}/(D-2)$.

- (b) How many states are there of each type?
- (c) Use the tensor rotation transformation $T'^{IJ} = R^I_K R^J_L T^{KL}$ (for rotation matrix R) to show that the three types of states rotate only into themselves; that is, a transformed antisymmetric tensor stays antisymmetric, etc.
- (d) The antisymmetric tensor states must come from a field $B_{\mu\nu}(=-B_{\nu\mu})$ in the full Lorentz invariant theory. Show that the field strength

$$H_{\mu\nu\lambda} \equiv \partial_{\mu}B_{\nu\lambda} + \partial_{\nu}B_{\lambda\mu} + \partial_{\lambda}B_{\mu\nu} \tag{1}$$

is invariant under gauge transformations

$$B_{\mu\nu} \to B_{\mu\nu} + \partial_{\mu}\epsilon_{\nu} - \partial_{\nu}\epsilon_{\mu}$$
 (2)

This Kalb-Ramond field is a generalization of the electromagnetic potential.

Finally, consider a massive particle. In this case, the little group is the set of rotations among $x^{1,2,\cdots D-1}$ in the particle's rest frame $(p^0 \neq 0, p^1 = p^I = 0)$.

- (e) How many polarization states are there in a vector of this little group?
- (f) Assuming that each transverse X^{I} gives the normal ordering constant $(1/2) \sum_{p=1}^{\infty} p = -1/24$ to the mass-squared operator for open strings,

$$M^{2} = \frac{1}{\alpha'} \left(\sum_{n=1}^{\infty} \alpha_{-n}^{I} \alpha_{n}^{I} - \frac{D-2}{24} \right) , \qquad (3)$$

argue that the states $\xi_I \alpha_{-1}^I | p^+, p^I \rangle$ must be massless so that the spacetime dimension is D = 26.