
PHYS-4601 Homework 6 Due 17 Oct 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to
turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Proofs About Stationary States

(a) Rephrasing Griffiths 2.1(b) Consider the spatial part of a stationary state ψ(~x) (that is,
Ψ(~x, t) = ψ(~x)e−iEt/h̄). Show that ψ(~x) can be chosen real as follows. Argue that, for any
ψ that solves the time-independent Schrödinger equation, so does ψ∗. Use that to show
that the real and imaginary parts of ψ are also solutions with the same energy. Finally,
argue that normalizability of ψ implies normalizability of its real and imaginary parts.

(b) Griffiths 2.2 rephrased Suppose that the energy E of a stationary state in one dimension
is less than the minimum value of the potential. Use the time-independent Schrödinger
equation to show that the second derivative of the wavefunction always has the same sign
as the wavefunction. Then use that fact to argue qualitatively that such a wavefunction
cannot be normalized, proving by contradiction that E must be greater than the minimum
value of the potential.

2. A Step Up most of Griffiths 2.34 plus some

Consider the step potential

V (x) =

{
0 x ≤ 0
V0 x > 0

. (1)

Assume V0 > 0. Consider scattering states with an incoming wave on the left and energy
E > V0. The particle moving in this potential has mass m.

(a) Find the reflection coefficient. Express your answer as a function of E, V0,m.

(b) To understand reflection and transmission coefficients when the potential takes different
values on either side of the barrier, we should think about conservation of probability.
Specifically, if we write the wavefunction as ψinc + ψref to the left and ψtrans to the
right, the reflection and transmission coefficients should be given by R = |jref/jinc|
and T = |jtrans/jinc|. Using your results from the previous assignment, show that
T = (k′/k)|ψtrans/ψinc|2 for this potential, where k =

√
2mE/h̄ and k′ =

√
2m(E − V0)/h̄.

(c) Using your answer to part (b), find the transmission coefficient for E > V0 and verify that
T = 1−R.

3. Numerical Determination of Energy Eigenvalue some combination of Griffiths 2.54 and
2.51

Consider the potential

V (x) = − h̄
2a2

m
sech2(ax) . (2)

Find the ground state energy using the numerical “wag the dog” method with Maple, as follows:

(a) Show that the Schrödinger equation for a bound state can be written in terms of dimen-
sionless variables as

d2ψ

dξ2
(ξ) +

(
2 sech2(ξ)− κ2

)
ψ(ξ) = 0 , (3)

where κ is a positive constant.



(b) The ground state should be an even function, so if we ignore normalization, we can choose
initial conditions ψ(0) = 1, ψ′(0) = 0. Starting with κ2 = 0.99, enter the Schrödinger
equation and initial conditions into Maple and solve the ODE numerically over the range
ξ = 0− 10. Then plot the solution. You may find the following Maple code helpful (note
that we rename variables for ease of typing):

with(plots):

schr := diff(u(x),x$2)+(2*sech(x)^2-0.99)*u(x) = 0

init1 := u(0) = 1

init2 := (D(u))(0) = 0

psi := dsolve({init1, init2, schr}, numeric, range = 0 .. 10)

psiplot := odeplot(psi)

display(psiplot)

Attach a printout of your code with results.

(c) What happens to the wavefunction as ξ gets large? By increasing your chosen value of
κ2 to 1.01, you should be able to get the “tail” of the wavefunction to flip over. Since
the correct wavefunction should go to zero at large ξ, this means you have bracketed the
correct eigenvalue for κ2. Choose successively closer together values of κ2 to find the
eigenvalue down to three decimal places. What’s the ground state energy?

(d) This potential is exactly solvable, and the (unnormalized) ground state wavefunction is
ψ(x) = sech(ax). Plot both your numerical wavefunction and the exact one together on
one plot and attach a hardcopy of your code and plot.

(e) Now suppose we cut the potential in half to V (x) = −(h̄2a2/2m)sech2(ax). Using the same
method, find the ground state energy. Numerically determined quantities should be good
to three decimal places. Attach a plot of your unnormalized ground state wavefunction in
the same dimensionless variables as above.
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